Weak-polynomial convergence on spaces ℓp and Lp

This paper is concerned with the study of the set P -1(0), when P varies over all orthogonally additive polynomials on ℓp and Lp spaces. We apply our results to obtain characterizations of the weak-polynomial topologies associated to this class of polynomials. © 2004 Kluwer Academic Publishers.

Guardado en:
Detalles Bibliográficos
Autor principal: Lassalle, S.
Otros Autores: Llavona, J.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05072caa a22005897a 4500
001 PAPER-21185
003 AR-BaUEN
005 20230518205236.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-17544381543 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lassalle, S. 
245 1 0 |a Weak-polynomial convergence on spaces ℓp and Lp 
260 |c 2004 
270 1 0 |m Lassalle, S.; Departamento De Matemática, Fac. De Cs. Exact. Y Nat., Univ. D., (1428) Buenos Aires, Argentina; email: slassall@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aron, R., Rueda, P., A problem concerning zero-subspaces of homogeneous polynomials (1991) Linear Topological Spaces and Complex Analysis, 3, pp. 20-23 
504 |a Aron, R., Cole, B., Gamelin, T., Spectra of algebras of analytic functions on a Banach space (1997) J. Reine Angew. Math., 415, pp. 51-93 
504 |a Aron, R., Gonzalo, R., Zagorodnyuk, A., Zeros of real polynomials (2000) Linear and Multilinear Algebra, 48, pp. 107-115 
504 |a Aron, R., Boyd, C., Ryan, R., Zalduendo, I., Zeros of polynomials on Banach spaces: The real story Positivity, , To appear in 
504 |a Biström, P., Jaramillo, J.A., Lindström, M., Polynomial compactness in Banach spaces (1998) Rocky Mountain Journal of Math., 28, pp. 1203-1226 
504 |a Bonic, R., Frampton, J., Smooth functions on Banach Manifolds (1966) J. Math. Mech., 15, pp. 877-898 
504 |a Carne, T.K., Cole, B., Gamelin, T.W., A uniform algebra of analytic functions on a Banach space (1989) Trans. Amer. Math. Soc., 314, pp. 639-659 
504 |a Castillo, M.F., Garcia, R., Gonzalo, R., Banach spaces in which all multilinear forms are weakly sequentially continuous (1999) Studia Math., 136 (2), pp. 121-145 
504 |a Davie, A.M., Gamelin, T.W., A theorem of polynomial-star approximation (1989) Trans. Amer. Math. Soc., 106, pp. 351-358 
504 |a Fabián, M., Preiss, D., Whitfield, J.H.M., Zizler, V.E., Separating polynomials on Banach spaces (1989) Quart. J. Math. Oxford (2), 40, pp. 409-422 
504 |a Garrido, M.I., Jaramillo, J.A., Llavona, J.G., Polynomial Topologies and Uniformities, , preprint 
504 |a González, M., Gutiérrez, J.M., Llavona, J.G., Polynomial continuity on ℓ1 (1997) Proc. Amer. Math. Soc., 125 (5), pp. 1349-1353 
504 |a Gutiérrez, J.M., Llavona, J.G., Polynomially continuous operators (1997) Israel J. Math., 102, pp. 179-187 
504 |a Lindenstrauss, J., Tzafriri, L., (1977) Classical Banach Spaces II, , Springer, Berlin 
504 |a Llavona, J.G., (1986) Approximation of Continuously Differentiable Functions, 130. , North Holland, Amsterdam, Mathematics Studies 
504 |a Pelczyńiski, A., A property of multilinear operations (1957) Studia Math., 16, pp. 173-182 
504 |a Royden, H.L., (1988) Real Analysis. 3rd Edition, , Collier Macmillan 
504 |a Sundaresan, K., Geometry of spaces of homogeneous polynomials on Banach lattices (1991) Applied Geometry and Discrete Mathematics, pp. 571-586. , DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Prov., RI 
520 3 |a This paper is concerned with the study of the set P -1(0), when P varies over all orthogonally additive polynomials on ℓp and Lp spaces. We apply our results to obtain characterizations of the weak-polynomial topologies associated to this class of polynomials. © 2004 Kluwer Academic Publishers.  |l eng 
536 |a Detalles de la financiación: Universidad Complutense de Madrid 
536 |a Detalles de la financiación: PB96-0607 
536 |a Detalles de la financiación: S.L.’s research was partially supported by the Project UBACyT EX 092 and Kent State University. J.G.L.’s research was supported by the Project PB96-0607 and by the Kent State University – Universidad Complutense de Madrid Cooperative Exchange Agreement. 
593 |a Departamento De Matemática, Fac. De Cs. Exact. Y Nat., Univ. D., (1428) Buenos Aires, Argentina 
593 |a Depto. De Analisis Matematico, Fac. De Matemat., Univ. C., 28040 Madrid, Spain 
690 1 0 |a POLYNOMIALS ON BANACH SPACES 
690 1 0 |a WEAK-POLYNOMIAL TOPOLOGIES 
690 1 0 |a ZEROS OF POLYNOMIALS ON ℓP AND LP 
700 1 |a Llavona, J.G. 
773 0 |d 2004  |g v. 8  |h pp. 283-296  |k n. 3  |p Positivity  |x 13851292  |t Positivity 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-17544381543&doi=10.1007%2fs11117-004-5008-x&partnerID=40&md5=b39b73944289208c6de61486892c0b42  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11117-004-5008-x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13851292_v8_n3_p283_Lassalle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13851292_v8_n3_p283_Lassalle  |y Registro en la Biblioteca Digital 
961 |a paper_13851292_v8_n3_p283_Lassalle  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 82138