Free and immobilised Citrobacter amalonaticus CECT 863 as a biocatalyst for nucleoside synthesis

The synthesis of modified nucleosides has received a great deal of attention due to their applications as antiviral and antitumoral agents. Among the different synthetic strategies, microbial transglycosylation has already shown to provide successful results. In the present work, we analyse the use...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Trelles, J.A
Otros Autores: Lewkowicz, E.S, Sinisterra, J.V, Iribarren, A.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09104caa a22010817a 4500
001 PAPER-21141
003 AR-BaUEN
005 20230518205234.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-8644245910 
024 7 |2 cas  |a polyacrylamide, 9003-05-8 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJBNB 
100 1 |a Trelles, J.A. 
245 1 0 |a Free and immobilised Citrobacter amalonaticus CECT 863 as a biocatalyst for nucleoside synthesis 
260 |c 2004 
270 1 0 |m Lewkowicz, E.S.; Universidad Nacional de Quilmes, R.S. Peña 180, (1876) Bernal, Buenos Aires, Argentina; email: elewko@unq.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Ewing, D.F., Holy, A., Votruba, I., Humble, R.W., Mackenzie, G., Hewedi, F., Shaw, G., Synthesis of 4- and 5-amino-1-(2-deoxy-D-erythro-pentofuranosyl)imidazole nucleosides by chemical and biotransformation methods (1991) Carbohydr. Res., 216, pp. 109-118 
504 |a Ferrero, M., Gotor, V., Chemoenzymatic transformations in nucleoside chemistry (2000) Monatshefte für Chemie, 131, pp. 585-616 
504 |a Freeman, A., Aharonowitz, Y., Immobilization of microbial cells in crosslinked, prepolymerized, linear polyacrylamide gels: Antibiotic production by immobilized Streptomyces daruligerus cells (1981) Biotechnol. Bioeng., 23, pp. 2747-2750 
504 |a Gaevaia, L.V., Zhukov, V.N., The use of immobilized enzymes for the synthesis of nucleosides and nucleotides including the ones labeled with radioactive isotopes (1987) Prikl. Biokhim. Mikrobiol., 23, pp. 309-316 
504 |a Garg, R., Gupta, S., Gao, H., Babu, M., Debnath, A., Hansch, C., Comparative quantitative structure-activity relationship studies on anti-HIV drugs (1999) Chemical Reviews, 99, pp. 3523-3601 
504 |a Hanrahan, J.R., Hutchinson, D.W., The enzymatic synthesis of antiviral agents (1992) Journal of Biotechnology, 23, pp. 193-210 
504 |a Hemachander, C., Bose, N., Puvanakrishnan, R., Whole cell immobilization of Ralstonia pickettii for lipase production (2001) Process Biochem., 36, pp. 629-633 
504 |a Herdewijn, P., De Clercq, E., (1990) Design of Anti-AIDS Drugs, 14, pp. 141-158. , Ed. Elsevier 
504 |a Hoffman, A.S., Hydrogels for biomedical applications (2002) Adv. Drug Delivery Rev., 43, pp. 3-12 
504 |a Holy, A., Antiviral agents in 2000 - And then what next (2001) Cas Lek Cesk, 140, pp. 583-591 
504 |a Holy, A., Votruba, I., Facile preparation of purine and pyrimidine 2-deoxy-beta-D- ribonucleosides by biotransformation on encapsulated cells (1987) Nucleic Acids Symp. Ser., 18, pp. 69-72 
504 |a Hori, N., Watanabe, M., Sunagawa, K., Uehara, K., Mikami, Y., Production of 5-methyluridine by immobilized thermostable purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus JS 859 (1991) J. Biotechnol., 17, pp. 121-131 
504 |a Iaskovich, G.A., Iakovleva, E.P., Microbiological synthesis of virazole by immobilized cells (1999) Prikl. Biokhim. Mikrobiol., 35, pp. 146-149 
504 |a Ichikawa, E., Kato, K., Sugar-modified nucleosides in past 10 years, a review (2001) Current Medicinal Chemistry, 8, pp. 385-423 
504 |a Krenitzky, T., Koszalka, G., Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases (1981) Biochemistry, 20, pp. 3615-3621 
504 |a Lianes, N., Fernandes, P., Leon, R., Cabrai, J.M.S., Pinheiro, H.M., Conversion of β-sitosterol by Mycobacterium sp. NRRL B-3805 cells immobilized on Celite supports (2001) J. Mol. Catal. B: Enzym., 11, pp. 523-530 
504 |a Lloyd, J.R., Lovley, D.R., Microbial detoxification of metals and radionuclides (2001) Current Opinion in Biotech., 12, pp. 248-253 
504 |a Lozinsky, V.I., Plieva, P.M., Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments (1998) Enzyme Microb. Technol., 23, pp. 227-242 
504 |a Pizarro, C., Fernandez-Torroba, M.A., Benito, C., Gonzalez-Saiz, J.M., Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment (1997) Biotechnol Bioeng., 53, pp. 497-510 
504 |a Prasad, A.K., Trikha, S., Parmar, V.S., Nucleoside synthesis mediated by glycosyl transferring enzymes (1999) Bioorganic Chem., 27, pp. 135-154 
504 |a Pugmire, M.J., Ealick, S.E., Structural analyses reveal two distinct families of nucleoside phosphorylases (2002) Biochem. J., 361, pp. 1-25 
504 |a Rastogi, S., Kumar, A., Mehra, N.K., Makhijani, S.D., Manoharan, A., Gangal, V., Kumar, R., Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters (2003) Biosensors and Bioelectronics, 18, pp. 23-29 
504 |a Rogert, M.C., Trelles, J.A., Porro, S., Lewkowicz, E.S., Iribarren, A.M., Microbial synthesis of antiviral nucleosides using E. coli BL 21 as biocatalyst (2002) Biocatalysis & Biotransformations, 20, pp. 347-351 
504 |a Trelles, J.A., Fernández, M., Lewkowicz, E.S., Iribarren, A.M., Sinisterra, J.V., Purine nucleoside synthesis from uridine using immobilised Enterobacter gergoviae CECT 875 whole cells (2003) Tetrahedron Lett., 44, pp. 2606-2609 
504 |a Utagawa, T., Enzymatic preparation of nucleoside antibiotics (1999) Journal of Molecular Catalysis B: Enzymatic, 6, pp. 215-222 
504 |a Utagawa, T., Morisawa, H., Yoshinaga, F., Yamazaki, A., Mitsugi, K., Hirose, Y., Microbiological synthesis of adenine arabinoside (1985) Agric. Biol. Chem., 49, pp. 1053-1058 
504 |a Yokozeki, K., Shirae, H., Kobayashi, K., Shiragami, H., Irie, Y., (1990) Method of Producing 2′,3′-Dideoxyinosine, US Patent No. 4,970,148 
520 3 |a The synthesis of modified nucleosides has received a great deal of attention due to their applications as antiviral and antitumoral agents. Among the different synthetic strategies, microbial transglycosylation has already shown to provide successful results. In the present work, we analyse the use of Citrobacter amalonaticus CECT 863 cells - free or immobilised - in the synthesis of some modified nucleosides. The main characteristics of the immobilised biocatalysts such as type and concentration of polymer, mechanical and storage stability and reuse were assessed. From these studies, polyacrylamide was selected as the best support based on its performance and potential industrial applications. In particular, it can be reused more than 50 times without significant loss of activity.  |l eng 
593 |a Universidad Nacional de Quilmes, R.S. Peña 180, (1876) Bernal, Buenos Aires, Argentina 
593 |a Depto. de Quim. Organ. y Farmaceut., Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain 
593 |a INGEBI, CONICET, Vuelta de Obligado 2490, (1428) Buenos Aires, Argentina 
593 |a University of Quilmes, Argentina 
593 |a University of Buenos Aires, Argentina 
593 |a Universidad Complutense de Madrid, Spain 
593 |a Pharmaceutical Chemistry, Universidad Complutense de Madrid, Spain 
690 1 0 |a CELL IMMOBILISATION 
690 1 0 |a CITROBACTER AMALONATICUS 
690 1 0 |a MICROBIAL TRANSGLYCOSYLATION 
690 1 0 |a MODIFIED NUCLEOSIDES 
690 1 0 |a POLYACRYLAMIDE 
690 1 0 |a CONCENTRATION (PROCESS) 
690 1 0 |a PERFORMANCE 
690 1 0 |a POLYMERS 
690 1 0 |a SYNTHESIS (CHEMICAL) 
690 1 0 |a ANTITUMORAL AGENTS 
690 1 0 |a ANTIVIRAL AGENTS 
690 1 0 |a CITROBACTER AMALONATICUS 
690 1 0 |a POLYACRYLAMIDE 
690 1 0 |a BIOCATALYSTS 
690 1 0 |a NUCLEOSIDE 
690 1 0 |a POLYACRYLAMIDE 
690 1 0 |a CATALYSIS 
690 1 0 |a ARTICLE 
690 1 0 |a BACTERIAL METABOLISM 
690 1 0 |a CATALYSIS 
690 1 0 |a CITROBACTER 
690 1 0 |a CITROBACTER AMALONATICUS 
690 1 0 |a GLYCOSYLATION 
690 1 0 |a IMMOBILIZED CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a NUCLEOTIDE METABOLISM 
690 1 0 |a BACTERIA (MICROORGANISMS) 
690 1 0 |a CITROBACTER 
690 1 0 |a CITROBACTER AMALONATICUS 
700 1 |a Lewkowicz, E.S. 
700 1 |a Sinisterra, J.V. 
700 1 |a Iribarren, A.M. 
773 0 |d 2004  |g v. 6  |h pp. 376-384  |k n. 4  |p Int. J. Biotechnol.  |x 09636048  |t International Journal of Biotechnology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-8644245910&doi=10.1504%2fIJBT.2004.005520&partnerID=40&md5=cd2c69893687329bdfa1d71ef91c9c0b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1504/IJBT.2004.005520  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09636048_v6_n4_p376_Trelles  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09636048_v6_n4_p376_Trelles  |y Registro en la Biblioteca Digital 
961 |a paper_09636048_v6_n4_p376_Trelles  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 82094