Wavelet entropy: A new tool for analysis of short duration brain electrical signals

Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rosso, O.A
Otros Autores: Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., Ba ar, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10995caa a22011417a 4500
001 PAPER-2101
003 AR-BaUEN
005 20230518203129.0
008 190411s2001 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0035970026 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JNMED 
100 1 |a Rosso, O.A. 
245 1 0 |a Wavelet entropy: A new tool for analysis of short duration brain electrical signals 
260 |c 2001 
270 1 0 |m Rosso, O.A.; Facultad de Ciencias Exactas, Instituto de Cálculo, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; email: rosso@ulises.ic.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Abarbanel, H.D.I., (1996), Analysis of Observed Chaotic Data, New York: Springer; (1996), Aldroubi A., Unser M. (Eds.), Wavelets in Medicine and Biology, Boca Raton: CRC Press; Başar, E., EEG-brain dynamics (1980), Relation between EEG and Brain Evoked Potentials, Amsterdam: Elsevier; Başar, E., (1998), Brain Function and Oscillations (I): Brain Oscillations, Principles and Approaches, Berlin: Springer; Başar, E., (1999), Brain Function and Oscillations (II): Integrative Brain Function. Neurophysiology and Cognitive Processes, Berlin: Springer; Birbaumer, N., Elbert, T., Canavan, A.G., Rockstroh, B., Slow potentials of the cerebral cortex and behavior (1990) Physiol. Rev., 70, pp. 1-41 
504 |a Blanco, S., Quian Quiroga, R., Rosso, O.A., Kochen, S., Time-frequency analysis of electroencephalogram series (1995) Phys. Rev. E, 51, pp. 2624-2631 
504 |a Blanco, S., D'Attellis, C., Isaacson, S., Rosso, O.A., Sirne, R., Time-frequency analysis of electroencephalogram series (II): gabor and wavelet transform (1996) Phys. Rev. E, 54, pp. 6661-6672 
504 |a Blanco, S., Figliola, A., Quian Quiroga, R., Rosso, O.A., Serrano, E., Time-frequency analysis of electroencephalogram series (III): wavelet packets and information cost function (1998) Phys. Rev. E, 57, pp. 932-940 
504 |a Casdagli, M.C., Iasemedis, L.D., Savit, R.S., Gilmore, R.L., Roper, S.N., Sackellares, J.C., Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy (1997) Electroenceph. Clin. Neurophysiol., 102, pp. 98-105 
504 |a Daubechies, I., (1992), Ten Lectures on Wavelets, Philadelphia: SIAM; Elbert, T., Ray, W.J., Kowalik, Z.J., Skinner, J.E., Graf, K.E., Birbaumer, N., Chaos and physiology: deterministic chaos in excitable cell assemblies (1994) Physiol. Rev., 74, pp. 1-47 
504 |a Gazzaniga, M.S., Ivry, R.B., Mangun, G.R., (1998), Cognitive Neuroscience: The Biology of the Mind, New York: WW Norton & Co; Gray, R., (1990), Entropy and Information Theory, New York: Springer; Guiasu, S., (1997), Information Theory with Applications, New York: McGraw-Hill; Iasemedis, L.D., Sackellares, J.C., The evolution with time of spatial distribution of the largest Lyapunov exponent on the human epileptic cortex (1991), pp. 49-82. , Duke D., Pritchards W. (Eds.), Measuring Chaos in Human Brain, Singapore: World Scientific; Iasemedis, L.D., Sackellares, J.C., Zaveri, H.P., Williams, W.J., Phase space topography and Lyapunov exponent of electrocorticograms in partial seizures (1990) Brain Topogr., 2, pp. 187-201 
504 |a Inouye, T., Shinosaki, K., Sakamoto, H., Toi, S., Ukai, S., Iyama, A., Katzuda, Y., Hirano, M., Quantification of EEG irregularity by use of the entropy of power spectrum (1991) Electroenceph. Clin. Neurophysiol., 79, pp. 204-210 
504 |a Inouye, T., Shinosaki, K., Imaya, A., Matsumoto, Y., Localization of activated areas and directional EEG patterns during mental arithmetic (1993) Electroenceph. Clin. Neurophysiol., 86, pp. 224-230 
504 |a Lehnertz, K., Elger, C.E., Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity (1998) Phys. Rev. Lett., 80, pp. 5019-5022 
504 |a Mallat, S., (1999), A Wavelet Tour of Signal Processing, second ed., San Diego: Academic Press; (1987), Niedermeyer E., Lopes da Silva F.H. (Eds.), Electroencephalography, Basic Principles, Clinical Applications, and Related Field, Baltimore: Urban & Schwarzenberg; Nunez, P.L., (1981), Electric Fields of the Brain: The Neurophysics of EEG, New York/Oxford: Oxford University Press; Nunez PL. Toward a quantitative description of large scale neocortical dynamic function and EEG. Behav Brain Sci 2000, in press; Pjin, J.P., Van Neerven, J., Noestt, A., Lopes da Silva, F.H., Chaos or noise in EEG signals: dependence on state and brain site (1991) Electroenceph. Clin. Neurophysiol., 79, pp. 371-381 
504 |a Powell, C.E., Percival, I.C., A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems (1979) J. Phys. A: Math. Gen., 12, pp. 2053-2071 
504 |a Quian Quiroga R., Rosso O.A., Başar E., Schürmann M. Wavelet-entropy in event-related potentials: A new method shows ordering of EEG-oscillations. Biol Cyber 2000a, in press; Quian Quiroga R., Arnhold J., Lehnertz K., Grassberger P. Kullback-Leibler and renormalised entropy: applications to EEG of epilepsy patients. Phys Rev E 2000b, in press; Rockstroh, B., Elbert, T., Canavan, A., Lutzenberger, W., Birbaumer, N., (1989), Slow Cortical Potentials and Behaviour, Baltimore: Urban & Schwarzenberg; Rosso OA, Blanco S. Characterization of dynamical evolution of electroencephalogram time series, 1999, unpublished; Sayers, B., Beagley, H.A., Riha, J., The mechanism of auditory evoked EEG response (1974) Nature, 247, pp. 481-483 
504 |a Shannon CE. A mathematical theory of communication. Bell Syst Technol J 1948;27:379-23, 623-56 
520 3 |a Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials. Copyright © 2001 Elsevier Science B.V.  |l eng 
536 |a Detalles de la financiación: James S. McDonnell Foundation, 98-66 EE-GLO-04 
536 |a Detalles de la financiación: Fundación Alberto J. Roemmers 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, 436-BUL-113/105 
536 |a Detalles de la financiación: ARG-4-G0A-6A 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 0029/98 
536 |a Detalles de la financiación: This work was supported by the Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina (PIP 0029/98), Fundación Alberto J. Roemmers, Argentina, the International Office of BMBF, Germany (ARG-4-G0A-6A), the Deutsche Forschungsgemeinschaft, Germany (436-BUL-113/105), and James McDonnell Foundation, USA (98-66 EE-GLO-04). 
593 |a Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Institute of Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria 
593 |a Institute of Physiology, Medical University Lübeck, Ratzeburger Alle 160, D-23538 Lübeck, Germany 
593 |a TÜBITAK Brain Dynamics Research Unit, Ankara, Turkey 
690 1 0 |a EEG, EVENT-RELATED POTENTIALS (ERP) 
690 1 0 |a SIGNAL ENTROPY 
690 1 0 |a TIME-FREQUENCY SIGNAL ANALYSIS 
690 1 0 |a VISUAL EVOKED POTENTIAL 
690 1 0 |a WAVELET ANALYSIS 
690 1 0 |a ADULT 
690 1 0 |a ARTICLE 
690 1 0 |a AUDITORY STIMULATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CORTICAL SYNCHRONIZATION 
690 1 0 |a ELECTROENCEPHALOGRAM 
690 1 0 |a ELECTROENCEPHALOGRAPHY 
690 1 0 |a ENERGY 
690 1 0 |a ENTROPY 
690 1 0 |a EVENT RELATED POTENTIAL 
690 1 0 |a EVOKED VISUAL RESPONSE 
690 1 0 |a FREQUENCY ANALYSIS 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN EXPERIMENT 
690 1 0 |a MATHEMATICAL ANALYSIS 
690 1 0 |a NORMAL HUMAN 
690 1 0 |a OSCILLATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a QUANTITATIVE ASSAY 
690 1 0 |a SIGNAL PROCESSING 
690 1 0 |a TECHNIQUE 
690 1 0 |a TIME 
690 1 0 |a VOLUNTEER 
690 1 0 |a WAVEFORM 
690 1 0 |a WAVELET 
690 1 0 |a ADULT 
690 1 0 |a BIOLOGICAL CLOCKS 
690 1 0 |a BRAIN 
690 1 0 |a CORTICAL SYNCHRONIZATION 
690 1 0 |a ELECTROENCEPHALOGRAPHY 
690 1 0 |a ENTROPY 
690 1 0 |a EVOKED POTENTIALS 
690 1 0 |a HUMANS 
690 1 0 |a MODELS, NEUROLOGICAL 
690 1 0 |a SIGNAL PROCESSING, COMPUTER-ASSISTED 
690 1 0 |a TIME FACTORS 
700 1 |a Blanco, S. 
700 1 |a Yordanova, J. 
700 1 |a Kolev, V. 
700 1 |a Figliola, A. 
700 1 |a Schürmann, M. 
700 1 |a Ba ar, E. 
773 0 |d 2001  |g v. 105  |h pp. 65-75  |k n. 1  |p J. Neurosci. Methods  |x 01650270  |w (AR-BaUEN)CENRE-5712  |t Journal of Neuroscience Methods 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035970026&doi=10.1016%2fS0165-0270%2800%2900356-3&partnerID=40&md5=c0ea9ae16357373c59fc8386f509d354  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/S0165-0270(00)00356-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01650270_v105_n1_p65_Rosso  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01650270_v105_n1_p65_Rosso  |y Registro en la Biblioteca Digital 
961 |a paper_01650270_v105_n1_p65_Rosso  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 63054