Sustained oscillations in stochastic systems

Many non-linear deterministic models for interacting populations present damped oscillations towards the corresponding equilibrium values. However, simulations produced with related stochastic models usually present sustained oscillations which preserve the natural frequency of the damped oscillatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Aparicio, Juan Pablo
Otros Autores: Solari, H.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05931caa a22007217a 4500
001 PAPER-2089
003 AR-BaUEN
005 20240930113353.0
008 190411s2001 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0035135563 
030 |a MABIA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Aparicio, Juan Pablo 
245 1 0 |a Sustained oscillations in stochastic systems 
260 |c 2001 
270 1 0 |m Aparicio, J.P.; Department of Biometrics, Cornell University, 432 Warren Hall, Ithaca, NY 14853-7801, United States; email: jpa9@cornell.edu 
504 |a Renshaw, E., (1991) Modelling Biological Populations in Space and Time, , Cambridge University, Cambridge 
504 |a Nåsell, I., On the time to extinction in recurrent epidemics (1999) J. Roy. Statist. Soc. B, 61, p. 309 
504 |a Murray, J.D., (1989) Mathematical Biology, , Springer, Heidelberg 
504 |a Siegman, A.E., (1986) Lasers, , University Science Books, Mill Valley 
504 |a Soper, H.E., Interpretation of periodicity in disease prevalence (1929) J. Roy. Statist. Soc. A, 92, p. 34 
504 |a Bartlett, M.S., Measles periodicity and community size (1957) J. Roy. Statist. Soc. A, 120, p. 48 
504 |a Bartlett, M.S., The critical community size for measles in the United States (1960) J. Roy. Statist. Soc. A, 123, p. 37 
504 |a Grenfell, B.T., Bolker, B., Kleczkowski, A., Seasonality, demography and the dynamics of measles in developed countries (1995), p. 248. , D. Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge; Keeling, M.J., Grenfell, B.T., Disease extinction and community size: Modeling the persistence of measles (1997) Science, 275, p. 65 
504 |a Van Herwaarden, O.A., Grasman, J., Stochastic epidemics: Major outbreaks and the duration of the endemic period (1995) J. Math. Biol., 33, p. 581 
504 |a Van Kampen, N.G., (1981) Stochastic Processes in Physics and Chemistry, , North-Holland, Amsterdam 
504 |a Solari, H.G., Natiello, M.A., Mindlin, B.G., (1996) Non-linear Dynamics: A Two-way Trip from Physics to Math, , Institute of Physics, Bristol 
504 |a Guckenheimer, J., Holmes, P.J., (1986) Non-linear Oscillators, Dynamical Systems and Bifurcations of Vector Fields, , Springer, New York, (first printing: 1983.) 
504 |a Kushner, H.J., (1967) Stochastic Optimization and Control, pp. 47-57. , Wiley, New York, (Chapter: The concept of invariant set for stochastic dynamical systems and applications to stochastic stability) 
504 |a Kushner, H.J., Stability of Stochastic Dynamical Systems (1968), 294, pp. 97-124. , Lecture Notes in Mathematics, Springer, Berlin, (Chapter: Stochastic stability); Meyn, S.P., Tweedie, R.L., (1993) Markov Chains and Stochastic Stability, , Springer, London 
506 |2 openaire  |e Política editorial 
520 3 |a Many non-linear deterministic models for interacting populations present damped oscillations towards the corresponding equilibrium values. However, simulations produced with related stochastic models usually present sustained oscillations which preserve the natural frequency of the damped oscillations of the deterministic model but showing non-vanishing amplitudes. The relation between the amplitude of the stochastic oscillations and the values of the equilibrium populations is not intuitive in general but scales with the square root of the populations when the ratio between different populations is kept fixed. In this work, we explain such phenomena for the case of a general epidemic model. We estimate the stochastic fluctuations of the populations around the equilibrium point in the epidemiological model showing their (approximated) relation with the mean values. © 2001 Elsevier Science Inc.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, TW04 
536 |a Detalles de la financiación: It is a pleasure to acknowledge valuable discussions with B. Gabriel Mindlin, Mario A. Natiello and Ingemar Nåsell. We acknowledge support from the Universidad de Buenos Aires, grant TW04. J.P.A. acknowledges support from the Mathematical and Theoretical Biology Institute at Cornell University. 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Department of Biometrics, 432 Warren Hall, Cornell University, Ithaca, NY 14853-7801, United States 
690 1 0 |a INTERACTING POPULATIONS 
690 1 0 |a NON-LINEAR DYNAMICS 
690 1 0 |a POPULATION DYNAMICS 
690 1 0 |a STOCHASTIC OSCILLATIONS 
690 1 0 |a OSCILLATION 
690 1 0 |a POPULATION MODELING 
690 1 0 |a STOCHASTICITY 
690 1 0 |a ARTICLE 
690 1 0 |a EPIDEMIC 
690 1 0 |a HUMAN 
690 1 0 |a MATHEMATICAL MODEL 
690 1 0 |a NONLINEAR SYSTEM 
690 1 0 |a OSCILLATION 
690 1 0 |a POPULATION DYNAMICS 
690 1 0 |a STOCHASTIC MODEL 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a POPULATION DYNAMICS 
690 1 0 |a STOCHASTIC PROCESSES 
700 1 |a Solari, H.G. 
773 0 |d 2001  |g v. 169  |h pp. 15-25  |k n. 1  |p Math. Biosci.  |x 00255564  |w (AR-BaUEN)CENRE-6039  |t Mathematical Biosciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035135563&doi=10.1016%2fS0025-5564%2800%2900050-X&partnerID=40&md5=67b91c37260b624f99682ac4dacc07fe  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/S0025-5564(00)00050-X  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00255564_v169_n1_p15_Aparicio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255564_v169_n1_p15_Aparicio  |y Registro en la Biblioteca Digital 
961 |a paper_00255564_v169_n1_p15_Aparicio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 63042