Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus

The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-te...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cowley, M.A
Otros Autores: Smart, J.L, Rubinstein, M., Cerdán, M.G, Diano, S., Horvath, T.L, Cone, R.D, Low, M.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11228caa a22014057a 4500
001 PAPER-20640
003 AR-BaUEN
005 20230518205203.0
008 190411s2001 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0035942777 
024 7 |2 cas  |a gamma-Aminobutyric Acid, 56-12-2; Green Fluorescent Proteins, 147336-22-9; Leptin; Luminescent Proteins; Neuropeptide Y; Pro-Opiomelanocortin, 66796-54-1 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NATUA 
100 1 |a Cowley, M.A. 
245 1 0 |a Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus 
260 |c 2001 
270 1 0 |m Cone, R.D.; Vollum Institute, Oregon Health Sciences University, Portland, OR 97201-3098, United States; email: cone@ohsu.edu 
506 |2 openaire  |e Política editorial 
504 |a Zhang, Y., Positional cloning of the mouse obese gene and its human homologue (1994) Nature, 372, pp. 425-432 
504 |a Erratum (1995) Nature, 374, p. 479 
504 |a Farooqi, I.S., Effects of recombinant leptin therapy in a child with congenital leptin deficiency (1999) N. Engl. J. Med., 341, pp. 879-884 
504 |a Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R., Burn, P., Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks (1995) Science, 269, pp. 546-549 
504 |a Kim, M.S., The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin (2000) J. Clin. Invest., 105, pp. 1005-1011 
504 |a Haynes, W.G., Morgan, D.A., Walsh, S.A., Mark, A.L., Sivitz, W.I., Receptor-mediated regional sympathetic nerve activation by leptin (1997) J. Clin. Invest., 100, pp. 270-278 
504 |a Haynes, W.G., Morgan, D.A., Djalali, A., Sivitz, W.I., Mark, A.L., Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic (1999) Hypertension, 33, pp. 542-547 
504 |a Hakansson, M.L., Brown, H., Ghilardi, N., Skoda, R.C., Meister, B., Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus (1998) J. Neurosci., 18, pp. 559-572 
504 |a Kalra, S.P., Interacting appetite-regulating pathways in the hypothalamic regulation of body weight (1999) Endocr. Rev., 20, pp. 68-100 
504 |a Cone, R.D., The central melanocortin system and energy homeostasis (1999) Trends Endocrinol. Metab., 10, pp. 211-216 
504 |a Elias, C.F., Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area (1999) Neuron, 23, pp. 775-786 
504 |a Glaum, S.R., Leptin, the obese gene product, rapidly modulates synaptic transmission in the hypothalamus (1996) Mol. Pharmacol., 50, pp. 230-235 
504 |a Spanswick, D., Smith, M.A., Groppi, V.E., Logan, S.D., Ashford, M.L., Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels (1997) Nature, 390, pp. 521-525 
504 |a Lee, K., Dixon, A.K., Richardson, P.J., Pinnock, R.D., Glucose-receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits (1999) J. Physiol. (Lond.), 515, pp. 439-452 
504 |a Shiraishi, T., Sasaki, K., Niijima, A., Oomura, Y., Leptin effects on feeding-related hypothalamic and peripheral neuronal activities in normal and obese rats (1999) Nutrition, 15, pp. 576-579 
504 |a Bagnol, D., Anatomy of an endogenous antagonist: Relationship between Agouti-related protein and proopiomelanocortin in brain (1999) J. Neurosci., , http://www.jneurosci.org/cgi/content/full/19/18/RC26, cited 25 Aug. 99 
504 |a Butler, A.A., A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse (2000) Endocrinology, 141, pp. 3518-3521 
504 |a Young, J.I., Authentic cell-specific and developmentally regulated expression of pro-opiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice (1998) J. Neurosci., 18, pp. 6631-6640 
504 |a Franklin, K.B.J., Paxinos, G., (1997) The Mouse Brain in Stereotaxic Coordinates, , Academic, San Diego 
504 |a Kelly, M.J., Loose, M.D., Ronnekleiv, O.K., Opioids hyperpolarize β-endorphin neurons via μ-receptor activation of a potassium conductance (1990) Neuroendocrinology, 52, pp. 268-275 
504 |a Slugg, R.M., Hayward, M.D., Ronnekleiv, O.K., Low, M.J., Kelly, M.J., Effect of the μ-opioid agonist DAMGO on medial basal hypothalamic neurons in β-endorphin knock-out mice (2000) Neuroendocrinology, 72, pp. 208-217 
504 |a Powis, J.E., Bains, J.S., Ferguson, A.V., Leptin depolarizes rat hypothalamic paraventricular nucleus neurons (1998) Am. J. Physiol., 274, pp. R1468-R1472 
504 |a Horvath, T.L., Bechmann, I., Naftolin, F., Kalra, S.P., Leranth, C., Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations (1997) Brain Res., 756, pp. 283-286 
504 |a Broberger, C., Landry, M., Wong, H., Walsh, J.N., Hokfelt, T., Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in pro-opiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus (1997) Neuroendocrinology, 66, pp. 393-408 
504 |a King, P.J., Widdowson, P.S., Doods, H.N., Williams, G., Regulation of neuropeptide Y release by neuropeptide Y receptor ligands and calcium channel antagonists in hypothalamic slices (1999) J. Neurochem., 73, pp. 641-646 
504 |a Grieco, P., Balse, P.M., Weinberg, D., MacNeil, T., Hruby, V.J., D-Amino acid scan of gamma-melanocyte-stimulating hormone: Importance of Trp(8) on human MC3 receptor selectivity (2000) J. Med. Chem., 43, pp. 4998-5002 
504 |a Csiffary, A., Gorcs, T.J., Palkovits, M., Neuropeptide Y innervation of ACTH-immunoreactive neurons in the arcuate nucleus of rats: A correlated light and electron microscopic double immunolabeling study (1990) Brain Res., 506, pp. 215-222 
504 |a Horvath, T.L., Naftolin, F., Leranth, C., GABAergic and catecholaminergic innervation of mediobasal hypothalamic beta-endorphin cells projecting to the medial preoptic area (1992) Neuroscience, 51, pp. 391-399 
504 |a Cowley, M.A., Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: Evidence of a cellular basis for the adipostat (1999) Neuron, 24, pp. 155-163 
504 |a Halaas, J.L., Physiological response to long-term peripheral and central leptin infusion in lean and obese mice (1997) Proc. Natl Acad. Sci. USA, 94, pp. 8878-8883 
520 3 |a The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (γ-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus.  |l eng 
593 |a Vollum Institute, Oregon Health Sciences University, Portland, OR 97201-3098, United States 
593 |a Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Department of Biology, University of Buenos Aires, 1428, Argentina 
593 |a Reproductive Neurosciences Unit, Department of Obstetrics and Gynecology, Yale Medical School, New Haven, CT 06520, United States 
593 |a Department of Neurobiology, Yale Medical School, New Haven, CT 06520, United States 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a HORMONES 
690 1 0 |a METABOLISM 
690 1 0 |a PROTEINS 
690 1 0 |a NEURONS 
690 1 0 |a NEURAL NETWORKS 
690 1 0 |a 4 AMINOBUTYRIC ACID 
690 1 0 |a CATION CHANNEL 
690 1 0 |a GREEN FLUORESCENT PROTEIN 
690 1 0 |a LEPTIN 
690 1 0 |a NEUROPEPTIDE Y 
690 1 0 |a PROOPIOMELANOCORTIN 
690 1 0 |a ACTION POTENTIAL 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ARCUATE NUCLEUS 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DEPOLARIZATION 
690 1 0 |a EMBRYO 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENE TARGETING 
690 1 0 |a MALE 
690 1 0 |a MOUSE 
690 1 0 |a NERVE CELL 
690 1 0 |a NERVE CELL NETWORK 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a REGULATORY MECHANISM 
690 1 0 |a TRANSGENIC MOUSE 
690 1 0 |a ACTION POTENTIALS 
690 1 0 |a ANIMALS 
690 1 0 |a ANIMALS, GENETICALLY MODIFIED 
690 1 0 |a ANOREXIA 
690 1 0 |a ARCUATE NUCLEUS 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a EVOKED POTENTIALS 
690 1 0 |a GAMMA-AMINOBUTYRIC ACID 
690 1 0 |a GREEN FLUORESCENT PROTEINS 
690 1 0 |a LEPTIN 
690 1 0 |a LUMINESCENT PROTEINS 
690 1 0 |a MALE 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED C57BL 
690 1 0 |a NERVE NET 
690 1 0 |a NEURAL INHIBITION 
690 1 0 |a NEURONS 
690 1 0 |a NEUROPEPTIDE Y 
690 1 0 |a PRO-OPIOMELANOCORTIN 
690 1 0 |a ANIMALIA 
690 1 0 |a MUS MUSCULUS 
700 1 |a Smart, J.L. 
700 1 |a Rubinstein, M. 
700 1 |a Cerdán, M.G. 
700 1 |a Diano, S. 
700 1 |a Horvath, T.L. 
700 1 |a Cone, R.D. 
700 1 |a Low, M.J. 
773 0 |d 2001  |g v. 411  |h pp. 480-484  |k n. 6836  |p Nature  |x 00280836  |w (AR-BaUEN)CENRE-48  |t Nature 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035942777&doi=10.1038%2f35078085&partnerID=40&md5=ffe478be242d697d7200328e8479ef85  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1038/35078085  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00280836_v411_n6836_p480_Cowley  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v411_n6836_p480_Cowley  |y Registro en la Biblioteca Digital 
961 |a paper_00280836_v411_n6836_p480_Cowley  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 81593