Behavioral differentiation in oviposition activity in Drosophila buzzatii from highland and lowland populations in Argentina: Plasticity or thermal adaptation?

Highland populations of several Drosophila species in Argentina were active early in the afternoon in the field as opposed to populations from a much warmer lowland site, where flies were mainly active in the early evening prior to sunset. For one of these species, Drosophila buzzatii, we tested for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dahlgaard, J.
Otros Autores: Hasson, E., Loeschcke, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Materias:
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15240caa a22014537a 4500
001 PAPER-2057
003 AR-BaUEN
005 20230518203123.0
008 190411s2001 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0035023840 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EVOLA 
100 1 |a Dahlgaard, J. 
245 1 0 |a Behavioral differentiation in oviposition activity in Drosophila buzzatii from highland and lowland populations in Argentina: Plasticity or thermal adaptation? 
260 |c 2001 
270 1 0 |m Dahlgaard, J.; Department of Ecology and Genetics, University of Aarhus, Ny Munkegade, Building 540, DK 8000 Aarhus C, Denmark; email: jesper.dahlgaard@biology.au.dk 
506 |2 openaire  |e Política editorial 
504 |a Atkinson, D., Temperature and organism size: A biological law for ectotherms? (1994) Adv. Ecol. Res., 25, pp. 1-58 
504 |a Atkinson, D., Sibly, R.M., Why are organisms usually bigger in colder environments? Making sense of a life history puzzle (1997) Trends Ecol. Evol., 12, pp. 235-239 
504 |a Barker, J.S.F., Starmer, W.T., Environmental effects and the genetics of oviposition site preference for natural yeast substrates in Drosophila buzzatii (1999) Hereditas, 130, pp. 145-175 
504 |a Bartholomew, G.A., Body temperature and energy metabolism (1982) Animal Physiology: Principles and Adaptations, pp. 333-406. , M. S. Gordon, ed. Macmillan, New York 
504 |a Bergh, S., Arking, R., Developmental profile of the heat shock response in early embryos of Drosophila (1984) J. Exp. Zool., 231, pp. 379-391 
504 |a Bijlsma, R., Loeschcke, V., (1997) Environmental Stress, Adaptation and Evolution, , Birkhäuser Verlag, Basel, Switzerland 
504 |a Boake, C.R.B., (1994) Quantitative Genetic Studies of Behavioral Evolution, , Univ. of Chicago Press, Chicago 
504 |a Brett, J.R., Temperature: Animals: Fishes (1970) Marine Ecology: a Comprehensive, Integrated Treatise on Life in Oceans and Coastal Waters, 1, pp. 515-560. , O. Kinne, ed. Environmental factors. wiley-Interscience, London 
504 |a Coyne, J.A., Bundgaard, J., Prout, T., Geographic variation of tolerance to environmental stress in Drosophila pseudoobscura (1983) Am. Nat., 122, pp. 474-488 
504 |a Dahlgaard, J., Loeschcke, V., Effects of inbreeding in three life stages of Drosophila buzzatii after embryos were exposed to a high temperature stress (1997) Heredity, 78, pp. 410-416 
504 |a Dahlgaard, J., Loeschcke, V., Michalak, P., Justesen, J., Induced thermotolerance and associated expression of the heatshock protein HSP70 in adult Drosophila melanogaster (1998) Funct. Ecol., 12, pp. 786-793 
504 |a David, J.R., Moreteau, B., Gautier, J.P., Pétavy, G., Stockel, A., Imasheva, I.G., Reactions norms of size characters in relation to growth temperature in Drosophila melanogaster: An isofemale line analysis (1994) Génét. Sél. Evol., 26, pp. 229-251 
504 |a Didomenico, B.J., Bugaisky, G.E., Lindquist, S., The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels (1982) Cell, 31, pp. 593-603 
504 |a Heat shock and recovery are mediated by different translational mechanisms (1982) Proc. Natl. Acad. Sci. USA, 79, pp. 6181-6185 
504 |a Dobzhansky, T., (1937) Genetics and the Origin of Species, , Univ. of Chicago Press, Chicago 
504 |a Fanara, J.J., Hasson, E., Rodríguez, Y.C., The effect of polymorphic inversions on body size in two natural populations of Drosophila buzzatii from Argentina (1997) Hereditas, 126, pp. 233-237 
504 |a Feder, M.E., Hofmann, G.E., Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology (1999) Annu. Rev. Physiol., 61, pp. 243-282 
504 |a Feder, M.E., Blair, N., Figueras, H., Oviposition site selection: Unresponsiveness of Drosophila to cues of potential thermal stress (1997) Anim. Behav., 53, pp. 585-588 
504 |a Fogleman, J.C., Oviposition site preference for substrate temperature in Drosophila melanogaster (1979) Behav. Gen., 9, pp. 407-412 
504 |a Fontdevila, A., Ruiz, A., Ocana, J., Alonso, G., The evolutionary history of Drosophila buzzatii. II. How much has chromosomal polymorphism changed in colonization (1982) Evolution, 36, pp. 843-851 
504 |a Gething, M.J., Sambrook, J.S., Protein folding in the cell (1992) Nature, 355, pp. 33-45 
504 |a Hasson, E., Fanara, J.J., Rodríguez, C., Vilardi, J.C., Reig, O.A., Fontdevila, A., The evolutionary history of Drosophila buzzatii. XXIV. Second chromosome inversions have different average effect on thorax length (1992) Heredity, 68, pp. 557-563 
504 |a Hasson, E., Rodríguez, C., Fanara, J.J., Naveira, H., Reig, O.A., Fontdevila, A., The evolutionary history of Drosophila buzzatii. XXVI. Macrogeographic patterns in the inversion polymorphisms in New World populations (1995) J. Evol. Biol., 8, pp. 369-384 
504 |a Hoffmann, A.A., Heritable variation for territorial success in field-collected Drosophila melanogaster (1991) Am. Nat., 138, pp. 668-679 
504 |a Hoffmann, A.A., Parsons, P.A., (1991) Evolutionary Genetics and Environmental Stress, , Oxford Univ. Press, New York 
504 |a Holm, S., A simple sequentially rejective multiple test procedure (1979) Scand. J. Stat., 6, pp. 65-70 
504 |a Huey, R.B., Grill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Funct. Ecol., 6, pp. 489-494 
504 |a Jaenike, J., Genetic and environmental determinants of food preference in Drosophila tirpunctata (1985) Evolution, 39, pp. 362-369 
504 |a Krebs, R.A., A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species (1999) Cell Stress Chap., 4, pp. 243-249 
504 |a Krebs, R.A., Bean, K.L., The mating behavior of Drosophila mojavensis on organ pipe and agria cactus (1991) Psyche, 98, pp. 101-109 
504 |a Krebs, R.A., Loeschcke, V., Costs and benefits of activation of the heat-shock response in Drosophila melanogaster (1994) Funct. Ecol., 8, pp. 730-737 
504 |a Resistance to thermal stress in preadult Drosophila buzzatii: Variation among populations and changes in relative resistance across life stages (1995) Biol. J. Linn. Soc., 56, pp. 517-531 
504 |a Levins, R., Thermal acclimation and heat resistance in Drosophila species (1969) Am. Nat., 103, pp. 483-499 
504 |a Loeschcke, V., Krebs, R.A., Selection for heat-shock resistance in larval and in adult Drosophila buzzatii: Comparing direct and indirect responses (1996) Evolution, 50, pp. 2354-2359 
504 |a Loeschcke, V., Krebs, R.A., Barker, J.S.F., Genetic variation for resistance and acclimation to high temperature stress in Drosophila buzzatii (1994) Biol. J. Linn. Soc., 52, pp. 83-92 
504 |a Loeschcke, V., Bundgaard, J., Barker, J.S.F., Reaction norms across and genetic parameters at different temperatures for thorax and wing size traits in Drosophila aldrichi and D. Buzzatii (1999) J. Evol. Biol., 12, pp. 605-623 
504 |a Markow, T.A., Phototactic behavior of Drosophila species at different temperatures (1979) Am. Nat., 114, pp. 884-892 
504 |a Mikasa, K., Narise, T., Genetic variation of temperature-influenced emigration behavior of Drosophila melanogaster in a natural population (1986) Jpn. J. Gen., 61, pp. 233-240 
504 |a Norry, F.M., Vilardi, J.C., Fanara, J.J., Rodríguez, C., Hasson, E., An adaptive chromosomal polymorphism affecting size-related traits and longevity selection in a natural population of Drosophila buzzatii (1995) Genetica, 96, pp. 285-291 
504 |a Parsons, P.A., Isofemale strains and evolutionary strategies in natural populations (1980) Evol. Biol., 13, pp. 175-217 
504 |a Behavioral variability and limits to evolutionary adaptation under stress (1998) Ad. Stud. Behav., 27, pp. 155-180 
504 |a Pitnick, S., Markow, T.A., Male gametic strategies: Sperm size, testes size, and the allocation of ejaculate among successive mates by the sperm-limited fly Drosophila pachea and its relatives (1994) Am. Nat., 143, pp. 785-819 
504 |a Pittendrigh, C.S., Circadian organization and the photoperiodic phenomena (1981) Biological Clocks in Seasonal Reproductive Cycles, pp. 1-31. , B. K. Follet and D. E. Follet, eds. Wright, Bristol, U.K 
504 |a Rice, W.R., Analyzing tables of statistical tests (1989) Evolution, 43, pp. 223-225 
504 |a Riihimaa, A., (1996) Genetic Variation in Diapause, Cold-hardiness and Circadian Eclosion Rhythm in Chymomyza Costata, , Ph.D. diss., University of Oulu, Oulu, Finland 
504 |a Robertson, F.W., Variation of body size within and between wild populations of Drosophila buzzatii (1987) Genetica, 72, pp. 111-125 
504 |a Rodríguez, C., Fanara, J.J., Hasson, E., The inversion polymorphism, body size and fitness components in a natural population of Drosophila buzzatii (1999) Evolution, 53, pp. 612-620 
504 |a Ruiz, A., Wasserman, M., Evolutionary cytogenetics of the Drosophila buzzatii species complex (1993) Heredity, 70, pp. 582-596 
504 |a Stalker, D.S., Carson, H.L., An altitudinal transect of Drosophila robusta Sturtevant (1948) Evolution, 2, pp. 295-305 
504 |a Stevenson, R.D., The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms (1985) Am. Nat., 126, pp. 362-386 
504 |a Sørensen, J.G., Dahlgaard, J., Loeschcke, V., Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: Down regulation of Hsp70 expression and variation in heat stress resistance traits (2001) Funct. Ecol., 15. , In press 
504 |a Thomas, R.H., Ecology of body size in Drosophila buzzatii: Untangling the effects of temperature and nutrition (1993) Ecol. Entomol., 18, pp. 84-90 
504 |a Tucić, N., Genetic capacity of adaptation to cold resistance at different developmental stages of Drosophila melanogaster (1979) Evolution, 33, pp. 350-358 
504 |a Wheeler, D.A., Kyriacou, C.P., Greenacre, M.L., Yu, Q., Rutila, J.E., Rosbash, M., Hall, J.C., Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster (1991) Science, 251, pp. 1082-1085 
520 3 |a Highland populations of several Drosophila species in Argentina were active early in the afternoon in the field as opposed to populations from a much warmer lowland site, where flies were mainly active in the early evening prior to sunset. For one of these species, Drosophila buzzatii, we tested for a genetic component of activity differences by carrying out crosses within and between populations and measuring oviposition activity of the progeny in the laboratory. We found that activity in the highland population exceeded that in the lowland one during the midafternoon, whereas activity in the lowland population exceeded that in the highland one prior to the beginning of the dark period. Oviposition activity for the period corresponding to the field observations was regressed on the proportion of the genome derived from the highland population. This variable significantly predicted oviposition activity between 1400 and 1600 and between 2000 and 2200 h. Activity of both reciprocal Crosses was intermediate and not significantly different from each other, suggesting that nuclear genetic, rather than cytoplasmic factors contribute to differences in oviposition activity between the populations. Two morphological, one genetic, and one stress resistance trait were also scored to examine whether temperature differences between environments were associated with other differences between populations. Wing length of wild-caught and laboratory-reared flies from the highland population significantly exceeded that in the lowland. Thorax length of laboratory-reared flies from the highland population also significantly exceeded that from the lowland. Chromosomal inversion frequencies differed significantly between the two populations with a fivefold reduction in the frequency of arrangement 2st in the highland as compared to the lowland population. This arrangement is known for its negative dose effect on size, and thus, the highland population has experienced a genetic change, perhaps as a result of adaptation to the colder environment, where body size and the frequency of arrangement 2st have changed in concert. Finally, a heat knockdown test revealed that the lowland population was significantly more resistant to high temperature than the highland one. In conclusion, we suggest that temperature has been an important selective agent causing adaptive differentiation between these two populations. We also suggest that the activity rhythms of the two populations have diverged as a consequence of behavioral evolution, that is, through avoidance of stressful temperatures as a mean of thermal adaptation.  |l eng 
593 |a Department of Ecology and Genetics, University of Aarhus, Building 540, DK 8000 Aarhus C, Denmark 
593 |a Depto. de Ciencias Biológicas, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina 
690 1 0 |a BEHAVIORAL AVOIDANCE 
690 1 0 |a GENETIC VARIATION 
690 1 0 |a HEAT RESISTANCE 
690 1 0 |a INSECTS 
690 1 0 |a INVERSION POLYMORPHISM 
690 1 0 |a THORAX/WING LENGTH 
690 1 0 |a ADAPTATION 
690 1 0 |a FLY 
690 1 0 |a OVIPOSITION 
690 1 0 |a PLASTICITY 
690 1 0 |a ADAPTATION 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a CHROMOSOME 
690 1 0 |a CLIMATE 
690 1 0 |a CROSS BREEDING 
690 1 0 |a DROSOPHILA 
690 1 0 |a EGG LAYING 
690 1 0 |a FEMALE 
690 1 0 |a FORELIMB 
690 1 0 |a GENETICS 
690 1 0 |a HEAT 
690 1 0 |a HISTOLOGY 
690 1 0 |a MALE 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PILOT STUDY 
690 1 0 |a THORAX 
690 1 0 |a ADAPTATION, PHYSIOLOGICAL 
690 1 0 |a ANIMALS 
690 1 0 |a CHROMOSOMES 
690 1 0 |a CLIMATE 
690 1 0 |a CROSSES, GENETIC 
690 1 0 |a DROSOPHILA 
690 1 0 |a FEMALE 
690 1 0 |a HEAT 
690 1 0 |a MALE 
690 1 0 |a OVIPOSITION 
690 1 0 |a PILOT PROJECTS 
690 1 0 |a THORAX 
690 1 0 |a WING 
651 4 |a ARGENTINA 
651 4 |a ARGENTINA 
700 1 |a Hasson, E. 
700 1 |a Loeschcke, V. 
773 0 |d 2001  |g v. 55  |h pp. 738-747  |k n. 4  |p Evolution  |x 00143820  |w (AR-BaUEN)CENRE-208  |t Evolution 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035023840&partnerID=40&md5=d2038ba2dc83d05683864d82e66f0085  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00143820_v55_n4_p738_Dahlgaard  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00143820_v55_n4_p738_Dahlgaard  |y Registro en la Biblioteca Digital 
961 |a paper_00143820_v55_n4_p738_Dahlgaard  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion