Using an artificial neural network for studying the interneuronal layer of a leech neuronal circuit

We have modeled the neuronai circuit that conveys mechanosensory input onto a pair of serotonergic neurons in the nervous system of the leech. The objective of this work is to use an artificial neural networks (ANN) in the investigation of the interneuronal layer of this circuit, which represents an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Santos, J.M
Otros Autores: Lidia, S.
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 1997
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04346caa a22005537a 4500
001 PAPER-20190
003 AR-BaUEN
005 20230518205135.0
008 190411s1997 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84902129805 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Santos, J.M. 
245 1 0 |a Using an artificial neural network for studying the interneuronal layer of a leech neuronal circuit 
260 |b Springer Verlag  |c 1997 
506 |2 openaire  |e Política editorial 
504 |a Borst, A., Egelhaaf, M., (1994) TINS, 17, pp. 257-263 
504 |a Chapeau-Blondeau, F., Chauvet, G., (1991) Biol, Cyb., 65, pp. 267-279 
504 |a Hertz, A., Krogh, A., Patrner, R.G., (1990) Introduction to the Theory F Nral Computation, , Addison-Wesley Publishing 
504 |a Houk, J., Singh, S., Fisher, C., Barto, A.G., (1992) Neural Network for Eonlroi, pp. 301-348. , Chapter 13 
504 |a Gu, X., Muller, K.J., Young, S.R., (1991) J. Physiol., 441, pp. 733-754 
504 |a Lockery, S.R., Sejnowsky, T.J., (1993) TINS, 16, pp. 283-290 
504 |a Lockery, S.R., Kristan Jr., W.B., (1990) J. Neurosci, 10, pp. 1816-1829 
504 |a Rumelhart, D., McClelland, J., (1986) Parallel Distributed Processing, , MIT Press 
504 |a Segev, I., (1992) TINS, pp. 414-421 
504 |a Smith, R.G., (1993) Uger's Manual, , Version 3-4, Univ. of PA Medical School, Phila 
504 |a Szczupak, L., Jigtan Jr., W.B.K., (1995) J. Neurophysiol., 74, pp. 2614-2623 
504 |a Szczupak, L., Kristan Jr., W.B., (1996) Soc. Neurosci. Abs., 811, p. 4 
504 |a Wittenberg, G., Kristan Jr., W.B., (1992) J. Neurophysiol, 68, pp. 1693-1707A4 - DGICYT (MEC); Spanish CICYT 
520 3 |a We have modeled the neuronai circuit that conveys mechanosensory input onto a pair of serotonergic neurons in the nervous system of the leech. The objective of this work is to use an artificial neural networks (ANN) in the investigation of the interneuronal layer of this circuit, which represents an unknown population of cells. The ANN is a three layer perceptron, whose input units represent the mechanosensory neurons, the output unit represents the serotonergic neurons and the hidden units represent the unknown intemeuronal layer. The connections between input and hidden units were represented as a saturation function rather than as linear one. The weights and thresholds were adjusted using the backpropagation algorithm. The ANN parameters were correlated with specific biological parameters enabling to test and classify the resuIting configurations according to physiological and experimental considerations. We obtained a finite and restricted number of solutions that can be experimentally tested.  |l eng 
593 |a Dpto. de Computación, F.C.E.y N., U.B.A. Ciudad Universitaria, 1428 Bs As, Argentina 
593 |a Dpto. de Fisiología, Fac. de Medicina, U.B.A., Paraguay 2155, 1121 Bs As, Argentina 
690 1 0 |a NEURAL NETWORKS 
690 1 0 |a PHYSIOLOGICAL MODELS 
690 1 0 |a BIOLOGICAL PARAMETER 
690 1 0 |a HIDDEN UNITS 
690 1 0 |a NEURONAL CIRCUITS 
690 1 0 |a SATURATION FUNCTION 
690 1 0 |a THREE-LAYER PERCEPTRON 
690 1 0 |a NEURONS 
700 1 |a Lidia, S. 
711 2 |c Lanzarote, Canary Islands  |d 4 June 1997 through 6 June 1997  |g Código de la conferencia: 105601 
773 0 |d Springer Verlag, 1997  |g v. 1240 LNCS  |h pp. 207-216  |p Lect. Notes Comput. Sci.  |n Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  |x 03029743  |w (AR-BaUEN)CENRE-983  |z 3540630473  |z 9783540630470  |t 4th International Work-Conference on Artificial and Natural Neural Networks, IWANN 1997 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902129805&partnerID=40&md5=e3c69153afe507219dde8d3c0e090cbe  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03029743_v1240LNCS_n_p207_Santos  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v1240LNCS_n_p207_Santos  |y Registro en la Biblioteca Digital 
961 |a paper_03029743_v1240LNCS_n_p207_Santos  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 81143