Thermal Diffusivity in Supercritical Fluids Measured by Thermal Lensing

Thermal diffusivities of supercritical CO2 and C2H6 were determined over a wide density range with a photothermal technique. The thermal lens, formed by the degradation of the absorbed light energy as heat by the sample, allows the employment of a nonequilibrium method in the critical region. Contro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wetzler, D.E
Otros Autores: Aramendía, P.F, Japas, M.L, Fernández-Prini, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic/Plenum Publishers 1998
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05667caa a22008777a 4500
001 PAPER-19898
003 AR-BaUEN
005 20230518205117.0
008 190411s1998 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0031702345 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJTHD 
100 1 |a Wetzler, D.E. 
245 1 0 |a Thermal Diffusivity in Supercritical Fluids Measured by Thermal Lensing 
260 |b Kluwer Academic/Plenum Publishers  |c 1998 
270 1 0 |m Japas, M.L.; Unidad de Actividad Química, Comn. Nac. de Ener. Atómica, Libertador 8250, 1429 Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Jessop, P.G., Ikariya, T., Noyori, R., (1994) Nature, 368, p. 231 
504 |a DeSimone, J.M., Guan, Z., Elsbernd, C.S., (1992) Science, 257, p. 945 
504 |a Fernández Prini, R., Japas, M.L., (1994) Chem. Soc. Rev., 23, p. 155 
504 |a Eckert, C.A., Knutson, B.L., Debenedetti, P.G., (1996) Nature, 383, p. 313 
504 |a Kestin, J., Wakeham, W.A., (1978) Physica, 92 A, p. 102 
504 |a Michels, A., Sengers, J.V., Van Der Gulik, P.S., (1962) Physica, 28, p. 1201 
504 |a Ford, N.C., Benedeck, G.B., (1965) Phys. Rev. Lett., 15, p. 649 
504 |a Leipertz, A., (1988) Int. J. Thermophys., 9, p. 897 
504 |a Kraft, K., Matos Lopes, M., Leipertz, A., (1995) Int. J. Thermophys., 16, p. 423 
504 |a Fang, H.L., Swofford, R.L., (1983) Ultrasensitive Laser Spectroscopy, pp. 175-232. , D. S. Kliger, ed. Academic Press, New York 
504 |a Heibel, G., Braslavsky, S.E., (1992) Chem. Rev., 92, p. 1381 
504 |a Leach, R.A., Harris, J.M., (1984) Anal. Chem., 56, p. 1481 
504 |a Leach, R.A., Harris, J.M., (1984) Anal. Chem., 56, p. 2801 
504 |a Kanda, D., Kimura, Y., Terazima, M., Hirota, H., (1996) Ber. Bunsenges Phys. Chem., 100, p. 656 
504 |a Dovichi, N.J., Harris, J.M., (1979) Anal. Chem., 51, p. 728 
504 |a Bailey, R.T., Cruickshank, F.R., Pugh, D., Guthrie, S., McLeod, A., Fowlds, W.S., Lee, W.R., Venkatesh, S., (1983) Chem. Phys., 77, p. 243 
504 |a Bailey, R.T., Cruickshank, F.R., Pugh, D., Johnston, W., (1980) J. Chem. Soc. Faraday Trans. II, 76, p. 633 
504 |a Bailey, R.T., Cruickshank, F.R., Pugh, D., Johnston, W., (1981) J. Chem. Soc. Faraday Trans. II, 77, p. 1387 
504 |a Brannon, J.H., Magde, D., (1978) J. Phys. Chem., 82, p. 705 
504 |a Hu, C., Whinnery, J.R., (1973) Appl. Opt., 12, p. 72 
504 |a Sheldon, S.J., Knight, L.V., Thorne, J.M., (1982) Appl. Opt., 21, p. 1663 
504 |a Carter, C.A., Harris, J.M., (1984) Appl. Opt., 23, p. 476 
504 |a Negri, R.M., Zalts, A., San Román, E.A., Aramendía, P.F., Braslavsky, S.E., (1991) Photochem. Protobiol., 53, p. 317 
504 |a Ely, J.F., Magee, J.W., Haynes, W.M., (1987) Research Report, 110. , Gas Proc. Assoc 
504 |a Friend, D.G., Inghan, H., Ely, J.F., (1991) J. Phys. Chem. Ref. Data, 20, p. 275 
504 |a Mosert, R., Van Den Berg, H.R., Van Der Gulik, P.S., Sengers, J.V., (1990) J. Chem. Phys., 9, p. 5454 
504 |a Michels, A., Sengers, J.V., Van Der Gulik, P.S., (1962) Physica, 28, p. 1216 
520 3 |a Thermal diffusivities of supercritical CO2 and C2H6 were determined over a wide density range with a photothermal technique. The thermal lens, formed by the degradation of the absorbed light energy as heat by the sample, allows the employment of a nonequilibrium method in the critical region. Controlling the refractive-index gradient, i.e., a density gradient, perturbations can be maintained at levels where convection is negligible. An easy-to-operate setup allowed us to measure thermal diffusivities in the density ranges 5 to 20 mol·dm-3 for CO2 at 308 and 313 K and 2 to 12mol·dm-3 for C2H6 at 308 K with a standard precision of 15%.  |l eng 
593 |a Depto. Quim. Inorg. Analitica y Q., Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Unidad de Actividad Química, Comn. Nac. de Ener. Atómica, Libertador 8250, 1429 Buenos Aires, Argentina 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a ETHANE 
690 1 0 |a PHOTOTHERMAL 
690 1 0 |a SUPERCRITICAL FLUID 
690 1 0 |a THERMAL DIFFUSIVITY 
690 1 0 |a THERMAL LENS 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a DENSITY (OPTICAL) 
690 1 0 |a ETHANE 
690 1 0 |a LIGHT EXTINCTION 
690 1 0 |a MEASUREMENT ERRORS 
690 1 0 |a PERTURBATION TECHNIQUES 
690 1 0 |a REFRACTIVE INDEX 
690 1 0 |a THERMAL VARIABLES MEASUREMENT 
690 1 0 |a SUPERCRITICAL CARBON DIOXIDE 
690 1 0 |a SUPERCRITICAL ETHANE 
690 1 0 |a THERMAL LENSING 
690 1 0 |a THERMAL DIFFUSION IN LIQUIDS 
700 1 |a Aramendía, P.F. 
700 1 |a Japas, M.L. 
700 1 |a Fernández-Prini, R. 
773 0 |d Kluwer Academic/Plenum Publishers, 1998  |g v. 19  |h pp. 27-42  |k n. 1  |p Int J Thermophys  |x 0195928X  |t International Journal of Thermophysics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031702345&doi=10.1023%2fA%3a1021442901002&partnerID=40&md5=d66d4b21aa7662386060481ff8cdd174  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1023/A:1021442901002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0195928X_v19_n1_p27_Wetzler  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0195928X_v19_n1_p27_Wetzler  |y Registro en la Biblioteca Digital 
961 |a paper_0195928X_v19_n1_p27_Wetzler  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 80851