Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold

To any (0, 2)-tensor field on the tangent bundle of a Riemannian manifold, we associate a global matrix function. Based on this fact, natural tensor fields are defined and characterized, essentially by means of well-known algebraic results. In the symmetric case, this classification coincides with t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calvo, M.D.C
Otros Autores: Keilhauer, G.G.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Netherlands 1998
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:To any (0, 2)-tensor field on the tangent bundle of a Riemannian manifold, we associate a global matrix function. Based on this fact, natural tensor fields are defined and characterized, essentially by means of well-known algebraic results. In the symmetric case, this classification coincides with the one given by Kowalski-Sekizawa; in the skew-symmetric one, it does with that obtained by Janyška.
Bibliografía:Gromoll, D., Klingenberg, W., Meyer, W., (1968) Riemannsche Geometrie im Großen, , Lecture Notes in Math. 55, Springer, New York
Janyška, J., Natural 2-forms on the tangent bundle of a Riemannian manifold (1994) Rend. Cir. Mat. Palermo (2). Suppl., 32, pp. 165-174
Kolář, I., Michor, P., Slovák, J., (1993) Natural Operations in Differential Geometry, , Springer-Verlag, New York
Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - A classification (1988) Bull. Tokyo Gakugei Univ. (4), 40, pp. 1-29
Krupka, D., Elementary theory of differential invariants (1978) Arch. Math. (Brno), 4, pp. 207-214
Krupka, D., (1979) Differential Invariants, , Lecture Notes, Faculty of Science, Purkyně University, Brno
Krupka, D., Janyška, J., (1990) Lectures on Differential Invariants, , Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno
Krupka, D., Mikolášová, V., On the uniqueness of some differential invariants: D, [,] , ∇ (1984) Czechoslovak Math. J., 34, pp. 588-597
Musso, E., Tricerri, F., Riemannian metrics on tangent bundles (1988) Ann. Mat. Pura Appl. (4), 150, pp. 1-19
ISSN:00465755
DOI:10.1023/A:1005084210109