Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold

To any (0, 2)-tensor field on the tangent bundle of a Riemannian manifold, we associate a global matrix function. Based on this fact, natural tensor fields are defined and characterized, essentially by means of well-known algebraic results. In the symmetric case, this classification coincides with t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calvo, M.D.C
Otros Autores: Keilhauer, G.G.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Netherlands 1998
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03422caa a22004337a 4500
001 PAPER-19871
003 AR-BaUEN
005 20230518205115.0
008 190411s1998 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0042227353 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Calvo, M.D.C. 
245 1 0 |a Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold 
260 |b Springer Netherlands  |c 1998 
270 1 0 |m Calvo, M.D.C.; Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, (1428) Buenos Aires, Argentina; email: mccalvo@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Gromoll, D., Klingenberg, W., Meyer, W., (1968) Riemannsche Geometrie im Großen, , Lecture Notes in Math. 55, Springer, New York 
504 |a Janyška, J., Natural 2-forms on the tangent bundle of a Riemannian manifold (1994) Rend. Cir. Mat. Palermo (2). Suppl., 32, pp. 165-174 
504 |a Kolář, I., Michor, P., Slovák, J., (1993) Natural Operations in Differential Geometry, , Springer-Verlag, New York 
504 |a Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - A classification (1988) Bull. Tokyo Gakugei Univ. (4), 40, pp. 1-29 
504 |a Krupka, D., Elementary theory of differential invariants (1978) Arch. Math. (Brno), 4, pp. 207-214 
504 |a Krupka, D., (1979) Differential Invariants, , Lecture Notes, Faculty of Science, Purkyně University, Brno 
504 |a Krupka, D., Janyška, J., (1990) Lectures on Differential Invariants, , Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno 
504 |a Krupka, D., Mikolášová, V., On the uniqueness of some differential invariants: D, [,] , ∇ (1984) Czechoslovak Math. J., 34, pp. 588-597 
504 |a Musso, E., Tricerri, F., Riemannian metrics on tangent bundles (1988) Ann. Mat. Pura Appl. (4), 150, pp. 1-19 
520 3 |a To any (0, 2)-tensor field on the tangent bundle of a Riemannian manifold, we associate a global matrix function. Based on this fact, natural tensor fields are defined and characterized, essentially by means of well-known algebraic results. In the symmetric case, this classification coincides with the one given by Kowalski-Sekizawa; in the skew-symmetric one, it does with that obtained by Janyška.  |l eng 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, (1428) Buenos Aires, Argentina 
690 1 0 |a CONNECTION MAP 
690 1 0 |a TANGENT BUNDLE 
690 1 0 |a TENSOR FIELD 
700 1 |a Keilhauer, G.G.R. 
773 0 |d Springer Netherlands, 1998  |g v. 71  |h pp. 209-219  |k n. 2  |p Geom. Dedic.  |x 00465755  |w (AR-BaUEN)CENRE-315  |t Geometriae Dedicata 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0042227353&doi=10.1023%2fA%3a1005084210109&partnerID=40&md5=28b3c71fcac02b130789e797986384f7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1023/A:1005084210109  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00465755_v71_n2_p209_Calvo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00465755_v71_n2_p209_Calvo  |y Registro en la Biblioteca Digital 
961 |a paper_00465755_v71_n2_p209_Calvo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 80824