Equational Classes of Totally Ordered Modal Lattices

A modal lattice is a bounded distributive lattice endowed with a unary operator which preserves the join-operation and the smallest element. In this paper we consider the variety CH of modal lattices that is generated by the totally ordered modal lattices and we characterize the lattice of subvariet...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Petrovich, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Netherlands 1999
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03462caa a22004457a 4500
001 PAPER-19592
003 AR-BaUEN
005 20230518205056.0
008 190411s1999 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0043230941 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Petrovich, A. 
245 1 0 |a Equational Classes of Totally Ordered Modal Lattices 
260 |b Springer Netherlands  |c 1999 
270 1 0 |m Petrovich, A.; Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: petrov@mate.dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Blok, W.J., The lattice of modal logics: An algebraic investigation (1980) J.S.L., 45 (2), pp. 221-236 
504 |a Blok, W.J., The lattice of varieties of modal algebras is not strongly atomic (1980) Algebra Universalis, 11, pp. 285-294 
504 |a Blok, W.J., Pretabular varieties of modal algebras (1980) Studia Logica, 39, pp. 101-124 
504 |a Makinson, D.C., Some embedding theorems for modal logic (1971) Notre Dame J. Formal Logic, 12, pp. 252-254 
504 |a Cignoli, R., Lafalce, S., Petrovich, A., Remarks on Priestley duality for distributive lattices (1991) Order, 8, pp. 299-315 
504 |a Goldblatt, R., Varieties of complex algebras (1989) Ann. Pure Appl. Logic, 44 (3), pp. 153-301 
504 |a Makinson, D., Aspectos de la lógica modal (1971) Notas de Lógica Matemática, 28. , Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca 
504 |a Petrovich, A., Distributive lattices with an operator (1996) Studia Logica, 56, pp. 205-224 
504 |a Priestley, H.A., Representation of distributive lattices by means of ordered Stone spaces (1970) Bull. London Math. Soc., 2, pp. 186-190 
504 |a Priestley, H.A., Ordered topological spaces and the representation of distributive lattices (1972) Proc. London Math. Soc., 2 (4), pp. 507-530 
504 |a Priestley, H.A., Stone lattices: A topological approach (1974) Fund. Math., 84, pp. 127-143 
520 3 |a A modal lattice is a bounded distributive lattice endowed with a unary operator which preserves the join-operation and the smallest element. In this paper we consider the variety CH of modal lattices that is generated by the totally ordered modal lattices and we characterize the lattice of subvarieties of CH. We also give an equational basis for each subvariety of CH.  |l eng 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a MODAL LATTICES 
690 1 0 |a PRIESTLEY RELATIONS 
690 1 0 |a PRIESTLEY SPACES 
773 0 |d Springer Netherlands, 1999  |g v. 16  |h pp. 1-17  |k n. 1  |p Order  |x 01678094  |w (AR-BaUEN)CENRE-600  |t Order 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0043230941&doi=10.1023%2fA%3a1006259631226&partnerID=40&md5=02d8a046a10dec075d91746f5f980157  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1023/A:1006259631226  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01678094_v16_n1_p1_Petrovich  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01678094_v16_n1_p1_Petrovich  |y Registro en la Biblioteca Digital 
961 |a paper_01678094_v16_n1_p1_Petrovich  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 80545