Titanium-supported titania photoelectrodes made by sol-gel processes

Titanium-supported titania-based photoelectrodes were prepared either by sol-gel processes or by thermal oxidation. Catalytic activities and stabilities of these photoelectrodes were monitored by photooxidizing formic acid in aqueous NaCl during three successive experiments under identical condition...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Candal, R.J
Otros Autores: Zeltner, W.A, Anderson, M.A
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: ASCE 1999
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10593caa a22007817a 4500
001 PAPER-19459
003 AR-BaUEN
005 20230518205048.0
008 190411s1999 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0033376865 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JOEED 
100 1 |a Candal, R.J. 
245 1 0 |a Titanium-supported titania photoelectrodes made by sol-gel processes 
260 |b ASCE  |c 1999 
270 1 0 |m Candal, R.J.; INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, Buenos Aires, CP 1428, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Abdullah, M., Low, G.K.-C., Matthews, R.W., Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide (1990) J. Physical Chemistry, 94, pp. 6820-6825 
504 |a Aguado, M.A., Anderson, M.A., Degradation of formic acid over semiconducting membranes supported on glass: Effects of structure and electronic doping (1993) Solar Energy Mat. Solar Cells, 28, pp. 345-361 
504 |a Aguado, M.A., Anderson, M.A., Hill, C.G., Influence of light intensity and membrane properties on the photocatalytic degradation of formic acid over TiO2 ceramic membranes (1994) J. Molec. Catal., 89, pp. 165-178 
504 |a Bideau, M., Claudel, B., Otterbein, M., Photocatalysis of formic acid oxidation by oxygen in an aqueous medium (1980) J. Photochem., 14, pp. 291-302 
504 |a Bums, R.A., Crittenden, J.C., Hand, D.W., Selzer, V.H., Sutter, L.L., Salman, S.R., Effect of inorganic ions in heterogeneous photocatalysis of TCE (1999) J. Envir. Engrg., 125 (1), pp. 77-85. , ASCE 
504 |a Candal, R.J., Zeltner, W.A., Anderson, M.A., TiO2-mediated photoelectrocatalytic purification of water (1998) J. Adv. Oxidat. Technol., 3 (3), pp. 270-276 
504 |a Choi, Y.-K., Seo, S.-S., Chjo, K.-H., Choi, Q.-W., Park, S.-M., Thin titanium dioxide film electrodes prepared by thermal oxidation (1992) J. Electrochem. Soc., 139 (7), pp. 1803-1807 
504 |a Fabes, B.D., Zelinski, B.J.J., Uhlmann, D.R., Sol-gel derived ceramic coatings (1993) Ceramic Films and Coatings, pp. 224-283. , J. B. Wachtman and R. A. Haber, eds., Noyes Publications, Park Ridge, N.J 
504 |a Fernández, A., Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification (1995) Appl. Catal. B: Envir., 7, pp. 49-63 
504 |a Finklea, H.O., Semiconductor electrode concepts and terminology (1988) Semiconductor Electrodes, pp. 1-42. , H. O. Finklea, ed., Elsevier Science, New York 
504 |a Finklea, H.O., Titanium dioxide (TiO2) and strontium titanate (SrTiO3) (1988) Semiconductor Electrodes, pp. 43-145. , H. O. Finklea, ed., Elsevier Science, New York 
504 |a Fu, X., Clark, L.A., Yang, Q., Anderson, M.A., Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/ SiO2 and TiO2/ZrO2." (1996) Envir. Sci. and Technol., 30 (2), pp. 647-653 
504 |a Ha, H.Y., Anderson, M.A., Photocatalytic degradation of formic acid via metal-supported titania (1996) J. Envir. Engrg., 122 (3), pp. 217-221. , ASCE 
504 |a Hidaka, H., A mechanistic study of the photoelectrochemical oxidation of organic compounds on a TiO2/TCO particulate film electrode assembly (1996) J. Photochem. Photobiol. A: Chem., 98, pp. 73-78 
504 |a Kikkawa, H., O'Regan, B., Anderson, M.A., The photoelectrochemical properties of Nb-doped TiO2 semiconducting ceramic membrane (1991) J. Electroanal. Chem., 309, pp. 91-101 
504 |a Kim, D.H., Anderson, M.A., Photoelectrocatalytic degradation of formic acid using a porous TiO2 thin-film electrode (1994) Envir. Sci. and Technol., 28 (3), pp. 479-483 
504 |a Kim, D.H., Anderson, M.A., Zeltner, W.A., Effects of firing temperature on photocatalytic and photoelectrocatalytic properties of TiO2 (1995) J. Envir. Engrg., 121 (8), pp. 590-594. , ASCE 
504 |a Matsumura, T., Smith, J.M., Photodecomposition kinetics of formic acid in aqueous solution (1970) AIChE J., 16, pp. 1064-1071 
504 |a Mbindyo, J.K.N., Ahmadi, M.F., Rusling, J.F., Pollutant decomposition with simultaneous generation of hydrogen and electricity in a photogalvanic reactor (1997) J. Electrochem. Soc., 144 (9), pp. 3153-3158 
504 |a Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., Itaya, A., Heterogeneous photocatalytic decomposition of phenol over TiO2 powder (1985) Bull. Chem. Soc. Japan, 58, pp. 2015-2022 
504 |a Sclafani, A., Palmisano, L., Schiavello, M., Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion (1990) J. Physical Chemistry, 94, pp. 829-832 
504 |a Tamura, H., Yoneyama, H., Iwakura, C., Murai, T., An effect of heat-treatment on the activity of titanium dioxide film electrodes for photo-sensitized oxidation of water (1977) Bull. Chem. Soc. Japan, 50 (3), pp. 753-754 
504 |a Torresi, R.M., Cámara, O.R., De Pauli, C.P., Giordano, M.C., Hydrogen evolution reaction on anodic titanium oxide films (1987) Electrochim. Acta, 32 (9), pp. 1291-1301 
504 |a Vinodgopal, K., Bedja, I., Kamat, P.V., Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye (1996) Chem. Mat., 8 (8), pp. 2180-2187 
504 |a Vinodgopal, K., Hotchandani, S., Kamat, P.V., Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol (1993) J. Physical Chemistry, 97, pp. 9040-9044 
504 |a Wahl, A., Photoelectrochemical studies pertaining to the activity of TiO2 towards photodegradation of organic compounds (1995) J. Electroanal. Chem., 396, pp. 41-51 
504 |a Xu, Q., Anderson, M.A., Sol-gel route to synthesis of microporous ceramic membranes: Preparation and characterization of microporous TiO2 and ZrO2 xerogels (1994) J. Am. Ceramic Soc., 77 (7), pp. 1939-1945 
520 3 |a Titanium-supported titania-based photoelectrodes were prepared either by sol-gel processes or by thermal oxidation. Catalytic activities and stabilities of these photoelectrodes were monitored by photooxidizing formic acid in aqueous NaCl during three successive experiments under identical conditions. Although electrodes coated with either titania (higher activity) or zirconia-titania (lower activity) and heated at 300°C were less active initially than similar electrodes heated to higher temperatures, electrodes heated at 300°C were more stable. Activities of titania electrodes were increased by depositing the titania at a higher withdrawal speed (21.5 versus 1.5 cm min-1) and by depositing more layers of titania. Stabilities of multilayer electrodes were improved by depositing the sol faster. Applying positive electrical potentials across electrodes also increased their activities. In particular, while activities diminished considerably in relatively high concentrations of NaCl if no potential was present, activities decreased only slightly under an electrical field. Activities of photoelectrodes prepared by heating metallic titanium plates at 300°C were low. Activities of photoelectrodes prepared by heating titanium at 500°C (giving a rutile coating) were similar to activities of photoelectrodes prepared by sol-gel techniques, but only when potentials were applied. Titanium-supported titania-based photoelectrodes were prepared either by sol-gel processes or by thermal oxidation. Catalytic activities and stabilities of these photoelectrodes were monitored by photooxidizing formic acid in aqueous NaCl during three successive experiments under identical conditions. Although electrodes coated with either titania (higher activity) or zirconia-titania (lower activity) and heated at 300 °C were less active initially than similar electrodes heated to higher temperatures, electrodes heated at 300 °C were more stable. Activities of titania electrodes were increased by depositing the titania at a higher withdrawal speed (21.5 versus 1.5 cm min-1) and by depositing more layers of titania. Stabilities of multilayer electrodes were improved by depositing the sol faster. Applying positive electrical potentials across electrodes also increased their activities. In particular, while activities diminished considerably in relatively high concentrations of NaCl if no potential was present, activities decreased only slightly under an electrical field. Activities of photoelectrodes prepared by heating metallic titanium plates at 300 °C were low. Activities of photoelectrodes prepared by heating titanium at 500 °C (giving a rutile coating) were similar to activities of photoelectrodes prepared by sol-gel techniques, but only when potentials were applied.  |l eng 
593 |a INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, CP 1428, Buenos Aires, Argentina 
593 |a Water Chem. Program, Univ. of Wisconsin, Madison, 660 North Park St., Madison, WI 53706, United States 
593 |a Water Chem. Program, Univ. of Wisconsin, Madison, 660 North Park St., Madison, WI, United States 
690 1 0 |a ELECTRODES 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a SOL-GELS 
690 1 0 |a THERMOOXIDATION 
690 1 0 |a TITANIUM OXIDES 
690 1 0 |a PHOTOELECTRODES 
690 1 0 |a PHOTOOXIDIZING FORMIC ACIDS 
690 1 0 |a CHEMICAL WATER TREATMENT 
690 1 0 |a TITANIUM 
700 1 |a Zeltner, W.A. 
700 1 |a Anderson, M.A. 
711 2 |c Reston, VA, United States 
773 0 |d ASCE, 1999  |g v. 125  |h pp. 906-912  |k n. 10  |p J. Environ. Eng.  |x 07339372  |w (AR-BaUEN)CENRE-5545  |t Journal of Environmental Engineering 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033376865&doi=10.1061%2f%28ASCE%290733-9372%281999%29125%3a10%28906%29&partnerID=40&md5=e25feade74a0fd7c25d27623c6a80e18  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1061/(ASCE)0733-9372(1999)125:10(906)  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07339372_v125_n10_p906_Candal  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07339372_v125_n10_p906_Candal  |y Registro en la Biblioteca Digital 
961 |a paper_07339372_v125_n10_p906_Candal  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 80412