Triangular antiferromagnetic Ising model
We solve the Ising problem on a triangular lattice with anisotropic interactions. Special consideration is given to the antiferromagnetic case. It is found that no phase transition exists if J1=J2=J3<0. Allowing a slightly different value of one of the coupling constants J3, we find k Tcf2(|J1|-|...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
1975
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 02923caa a22004337a 4500 | ||
|---|---|---|---|
| 001 | PAPER-18692 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205004.0 | ||
| 008 | 190411s1975 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-33744705737 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Eggarter, T.P. | |
| 245 | 1 | 0 | |a Triangular antiferromagnetic Ising model |
| 260 | |c 1975 | ||
| 270 | 1 | 0 | |m Eggarter, T.P.; Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, Argentina |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Onsager, L., (1944) Phys. Rev., 65, p. 117 | ||
| 504 | |a Mattis, D.C., (1965) The Theory of Magnetism, , Harper and Row, New York | ||
| 504 | |a Landau, L.D., Lifshitz, E.M., (1969) Statistical Physics, , 2nd, ed., Pergamon, Oxford, England | ||
| 504 | |a Stanley, H.E., (1971) Introduction to Phase Transitions and Critical Phenomena, , Oxford U. P., Oxford, England | ||
| 504 | |a Feynman, R.P., (1972) Statistical Mechanics, A Set of Lectures, , Benjamin, Reading, Mass | ||
| 504 | |a Thompson, C.J., (1972) Mathematical Statistical Mechanics, , Macmillan, New York | ||
| 504 | |a Kramers, H.A., Wannier, G.H., (1941) Phys. Rev., 60, p. 252 | ||
| 504 | |a Kramers, H.A., Wannier, G.H., (1941) Phys. Rev., 60, p. 263 | ||
| 504 | |a Vdovichenko, N.V., (1964) Zh. Eksp. Teor. Fiz., 47, p. 715 | ||
| 504 | |a (1965) Sov. Phys.-JETP, 20, p. 477 | ||
| 504 | |a Sherman, S., (1960) J. Math. Phys., 1, p. 202 | ||
| 504 | |a Sherman, S., (1963) J. Math. Phys., 4, p. 1213 | ||
| 520 | 3 | |a We solve the Ising problem on a triangular lattice with anisotropic interactions. Special consideration is given to the antiferromagnetic case. It is found that no phase transition exists if J1=J2=J3<0. Allowing a slightly different value of one of the coupling constants J3, we find k Tcf2(|J1|-|J3|)ln2if|J3|-|J1|→0-, while no phase transition exists if |J3|>|J1|. Physical arguments to explain this behavior are also presented. © 1975 The American Physical Society. |l eng | |
| 593 | |a Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, Argentina | ||
| 773 | 0 | |d 1975 |g v. 12 |h pp. 1933-1937 |k n. 5 |x 01631829 |w (AR-BaUEN)CENRE-397 |t Physical Review B | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744705737&doi=10.1103%2fPhysRevB.12.1933&partnerID=40&md5=38e2034634da0adce224f7d09d38129d |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevB.12.1933 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_01631829_v12_n5_p1933_Eggarter |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01631829_v12_n5_p1933_Eggarter |y Registro en la Biblioteca Digital |
| 961 | |a paper_01631829_v12_n5_p1933_Eggarter |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 79645 | ||