Triangular antiferromagnetic Ising model

We solve the Ising problem on a triangular lattice with anisotropic interactions. Special consideration is given to the antiferromagnetic case. It is found that no phase transition exists if J1=J2=J3<0. Allowing a slightly different value of one of the coupling constants J3, we find k Tcf2(|J1|-|...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Eggarter, T.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1975
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02923caa a22004337a 4500
001 PAPER-18692
003 AR-BaUEN
005 20230518205004.0
008 190411s1975 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33744705737 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Eggarter, T.P. 
245 1 0 |a Triangular antiferromagnetic Ising model 
260 |c 1975 
270 1 0 |m Eggarter, T.P.; Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Onsager, L., (1944) Phys. Rev., 65, p. 117 
504 |a Mattis, D.C., (1965) The Theory of Magnetism, , Harper and Row, New York 
504 |a Landau, L.D., Lifshitz, E.M., (1969) Statistical Physics, , 2nd, ed., Pergamon, Oxford, England 
504 |a Stanley, H.E., (1971) Introduction to Phase Transitions and Critical Phenomena, , Oxford U. P., Oxford, England 
504 |a Feynman, R.P., (1972) Statistical Mechanics, A Set of Lectures, , Benjamin, Reading, Mass 
504 |a Thompson, C.J., (1972) Mathematical Statistical Mechanics, , Macmillan, New York 
504 |a Kramers, H.A., Wannier, G.H., (1941) Phys. Rev., 60, p. 252 
504 |a Kramers, H.A., Wannier, G.H., (1941) Phys. Rev., 60, p. 263 
504 |a Vdovichenko, N.V., (1964) Zh. Eksp. Teor. Fiz., 47, p. 715 
504 |a (1965) Sov. Phys.-JETP, 20, p. 477 
504 |a Sherman, S., (1960) J. Math. Phys., 1, p. 202 
504 |a Sherman, S., (1963) J. Math. Phys., 4, p. 1213 
520 3 |a We solve the Ising problem on a triangular lattice with anisotropic interactions. Special consideration is given to the antiferromagnetic case. It is found that no phase transition exists if J1=J2=J3<0. Allowing a slightly different value of one of the coupling constants J3, we find k Tcf2(|J1|-|J3|)ln2if|J3|-|J1|→0-, while no phase transition exists if |J3|>|J1|. Physical arguments to explain this behavior are also presented. © 1975 The American Physical Society.  |l eng 
593 |a Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, Argentina 
773 0 |d 1975  |g v. 12  |h pp. 1933-1937  |k n. 5  |x 01631829  |w (AR-BaUEN)CENRE-397  |t Physical Review B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744705737&doi=10.1103%2fPhysRevB.12.1933&partnerID=40&md5=38e2034634da0adce224f7d09d38129d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevB.12.1933  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01631829_v12_n5_p1933_Eggarter  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01631829_v12_n5_p1933_Eggarter  |y Registro en la Biblioteca Digital 
961 |a paper_01631829_v12_n5_p1933_Eggarter  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 79645