Locatton Estimators Based On Linear Combinations Of Modified Order Statistics
Let X1.,., Xn be i.i.d. random variables with common distribution function F(x- 9 ) 5 and let a(u) be a function defined on [0,1], For each t⋲R define the t-order statistics as: Xin (t)= Xk if there in exist exactly (i- 1) Xj ‘s such that | Xj-t|<|Xk-t| and define the variable T (t) = n 2. a(...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
1976
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 02966caa a22003737a 4500 | ||
|---|---|---|---|
| 001 | PAPER-18683 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205003.0 | ||
| 008 | 190411s1976 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-0001613437 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Yohai, V.J. | |
| 245 | 1 | 0 | |a Locatton Estimators Based On Linear Combinations Of Modified Order Statistics |
| 260 | |c 1976 | ||
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Bickel, P., One-step Huber estimates in the linear model. (1975) J. Amer. Statist. Assoc., 70, pp. 428-434 | ||
| 504 | |a Gnanadesikan, R., Kettenring, J.R., Robust estimates, re siduals, and outlier rejection with multiresponse data. (1972) Biarcit, 28, pp. 81-124 | ||
| 504 | |a Hajek, J., Sidak, Z., (1967) Theory of Rank Tests., , New York: Academic Press | ||
| 504 | |a Huber, P., Robust estimation of a location parameter. (1964) Ann.’ Statist., 35, pp. 73-101 | ||
| 504 | |a Jureckova, J., Asymptotic linearity’ of a rank statistic in gression parameters. (1969) Ann. Math. Statist., 40, pp. 1889-1900 | ||
| 504 | |a Yohai, V., Maronna, R., (1975), Location estimators based on lin-ar combinations of modified order statistics. Notas de Materraticn Na 31, Depto de Mat. Fac. C. Exactas, U. N. de La Plata | ||
| 520 | 3 | |a Let X1.,., Xn be i.i.d. random variables with common distribution function F(x- 9 ) 5 and let a(u) be a function defined on [0,1], For each t⋲R define the t-order statistics as: Xin (t)= Xk if there in exist exactly (i- 1) Xj ‘s such that | Xj-t|<|Xk-t| and define the variable T (t) = n 2. a(i/n) Xin(t). We consider estimates n i = 1 in of 9 defined as solutions of the equation T(0) = 6, and Tone-step” versions T(9), where 6 is an initial estimate. We find the asymptotic distributions of these estimates, and study their small-sample behaviour by Monte Carlo simulation. © 1976 by Marcel Dekker, Inc. |l eng | |
| 593 | |a Facultad de Ciencias Exactas U.N.B.A, Buencs Aires, Instituto de Informatica Hidria, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a ASYMPTOTIC THEORY |
| 690 | 1 | 0 | |a ROBUSTNESS |
| 700 | 1 | |a Maronna, R.A. | |
| 773 | 0 | |d 1976 |g v. 5 |h pp. 481-486 |k n. 5 |p Commun Stat Theory Methods |x 03610926 |w (AR-BaUEN)CENRE-84 |t Communications in Statistics - Theory and Methods | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001613437&doi=10.1080%2f03610927608827368&partnerID=40&md5=c6a92780d1750336958297f590abda98 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1080/03610927608827368 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_03610926_v5_n5_p481_Yohai |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03610926_v5_n5_p481_Yohai |y Registro en la Biblioteca Digital |
| 961 | |a paper_03610926_v5_n5_p481_Yohai |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 79636 | ||