Mixed Random Mosaics

Cowan [2] has defined random mosaics processes RMP in R2 and has given some basic properties of them. In particular Cowan introduces the fundamental parameters α, βk, γk of the process and, in terms of them, he computes the mean values of the area α, perimeter h, number of ares w and number of verti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Santaló, L.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1984
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03108caa a22003737a 4500
001 PAPER-18296
003 AR-BaUEN
005 20230518204940.0
008 190411s1984 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84985366109 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Santaló, L.A. 
245 1 0 |a Mixed Random Mosaics 
260 |c 1984 
270 1 0 |m Santaló, L.A.; Ciudad Universitaria (Nuñez), Departamento de Matematica, Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Cowan, R., The use of the ergodic theorems in random geometry (1978) Advances in Applied Probability, 10, pp. 47-57 
504 |a Cowan, R., Properties of ergodic random mosaic processes (1980) Mathematische Nachrichten, 97, pp. 89-102 
504 |a Coxeter, H.S.M., (1961) Introduction to Geometry, , John Wiley, New York 
504 |a Miles, R.E., Random polygons determined by random lines in a plane, I and II (1964) Proceedings of the National Academy of Sciences, 52, pp. 901-907. , 1157, 1160 
504 |a Miles, R.E., On the homogeneous planar Poisson process (1970) Math. Biosc., 6, pp. 85-127 
504 |a Rogers, C.A., (1964) Packing and covering, , The University Press, Cambridge 
504 |a Santaló, L.A., (1976) Integral Geometry and Geometric Probability Encyclop. Math, and Appl., , Addison‐Wesley, Reading 
504 |a Santaló, L.A., (1980), pp. 3-13. , Random lines and tessellations in a plane, Stochastica, IV 
520 3 |a Cowan [2] has defined random mosaics processes RMP in R2 and has given some basic properties of them. In particular Cowan introduces the fundamental parameters α, βk, γk of the process and, in terms of them, he computes the mean values of the area α, perimeter h, number of ares w and number of vertices v of a typical polygon of the RMP. Our purpose is to consider the RMP obtained by superposition of two independent random mosaics. Then, the characteristics a12, h12, w12, v12 of the resulting process are computed in terms of the characteristics ai, hi, wi, vi, of each process. The case of non random tessellations mixed with random mosaics is also considered. Copyright © 1984 WILEY‐VCH Verlag GmbH & Co. KGaA  |l eng 
593 |a Ciudad Universitaria (Nuñez), Departamento de Matematica, Buenos Aires, Argentina 
773 0 |d 1984  |g v. 117  |h pp. 129-133  |k n. 1  |p Math. Nachr.  |x 0025584X  |t Mathematische Nachrichten 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84985366109&doi=10.1002%2fmana.3211170108&partnerID=40&md5=010d3ac8529697217f0eeb76c863bcfe  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/mana.3211170108  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0025584X_v117_n1_p129_Santalo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0025584X_v117_n1_p129_Santalo  |y Registro en la Biblioteca Digital 
961 |a paper_0025584X_v117_n1_p129_Santalo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 79249