The expected volume of a random polytope in a ball

For any convex body K in d‐dimensional Euclidean space Ed(d≥2) and for integers n and i, n ≥ d + 1,1 ≤ i ≤ n, let V(d) n‐ii(K) be the expected volume of the convex hull Hn‐i, i of n independent random points, of which n‐i are uniformly distributed in the interior, the other i on the boundary of K. W...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Affentranger, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1988
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07320caa a22007697a 4500
001 PAPER-18007
003 AR-BaUEN
005 20230518204922.0
008 190411s1988 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84986656862 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Affentranger, F. 
245 1 4 |a The expected volume of a random polytope in a ball 
260 |c 1988 
270 1 0 |m Affentranger, F.; Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Affentranger, F., (1988), Valores medios relacionados con puntos aleatorios dados en un cuerpo convexo y en particular en la esfera. Ph.D. thesis, Buenos Aires; Alikoski, H.A., Ueber das Sylvestersche Vierpunktproblem (1939) Ann. Acad. Sci. Fenn., 51, pp. 1-10 
504 |a Baddeley, A., Integrals on a moving manifold and geometrical probability (1977) Advances in Applied Probability, 9, pp. 588-603 
504 |a Blaschke, W., Lösung des ‘Vierpunktproblems' von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten (1917) Leipziger Ber., 69, pp. 436-453 
504 |a Blaschke, W., (1923) Vorlesungen über Differentialgeometrie II., , Springer, Berlin 
504 |a Buchta, C., Ueber die konvexe Hülle von Zufallspunkten in Eibereichen (1983) Elem. Math., 38, pp. 153-156 
504 |a Buchta, C., Zufallspolygone in konvexen Vielecken (1984) J. reine angew. Math., 347, pp. 212-220 
504 |a Buchta, C., Das Volumen von Zufallspolyedern im Ellipsoid (1984) Arz. Oesterr. Akad. Wiss. Math.-Natur. Kl., 1, pp. 1-4 
504 |a Buchta, C., Stochastische Approximation konvexer Polygone (1984) Z. Wahrsch. verw. Geb., 67, pp. 283-304 
504 |a Buchta, C., Zufällige Polyeder—Eine Uebersicht. In: Zahlentheoretische Analysis (ed. by E. Hlawka) (1985) Lect. Notes Math., 1114, pp. 1-13. , Springer, Berlin 
504 |a Buchta, C., A note on the volume of a random polytope in a tetrahedron (1986) Illinois J. Math., 30, pp. 653-659 
504 |a Buchta, C., On a conjecture of R.E. Miles about the convex hull of random points (1986) Monatsh. Math., 102, pp. 91-102 
504 |a Buchta, C., Müller, J., Random polytopes in a ball (1984) J. Appl. Prob., 21, pp. 753-762 
504 |a Buchta, C., Müller, J., Tichy, R.F., Stochastical approximation of convex bodies (1985) Math. Ann., 271, pp. 225-235 
504 |a Buchta, C., Tichy, R.F., Random polytopes on the torus (1985) Proceedings of the American Mathematical Society, 93, pp. 312-316 
504 |a Cover, T.M., Efron, B., Geometrical probability and random points on a hypersphere (1967) The Annals of Mathematical Statistics, 38, pp. 213-220 
504 |a Crofton, M.W., Probability (1885) Encyclopaedia Britannica, 19, pp. 768-788 
504 |a Czuber, E., (1903) Wahrscheinlichkeitsrechnung und ihre Anwendung auf Fehlerausgleichung, Statistik und Lebensversicherung I., , Teubner, Berlin 
504 |a Deltheil, R., (1926) Probabilités Géométriques. Traité du Calcul des Probabilités et de ses Applications., , Gauthier‐Villars, Paris 
504 |a Efron, B., The convex hull of a random set of points (1965) Biometrika, 52, pp. 331-343 
504 |a Groemer, H., On some mean values associated with a randomly selected simplex in a convex set (1973) Pacific Journal of Mathematics, 45, pp. 525-533 
504 |a Groemer, H., On the mean value of the volume of a random polytope in a convex set (1974) Arch. Math., 25, pp. 86-90 
504 |a Gruber, P., Approximation of convex bodies (1983) Convexity and its Applications, pp. 131-162. , ed. by, P. Gruber, J. M. Wills, Birkhäuser, Basel 
504 |a Hostinský, B., Sur les probabilités géométriques (1925) Publ. Fac. Sci. Univ. Masaryk, Brno, 50, pp. 1-26 
504 |a Kendall, M.G., Moran, P.A.P., (1963) Geometrical Probability., , Griffin, London 
504 |a Kingman, J.F.C., Random secants of a convex body (1969) Journal of Applied Probability, 6, pp. 660-672 
504 |a Miles, R.E., Isotropic random simplices (1971) Advances in Applied Probability, 3, pp. 353-382 
504 |a Müller, J., (1980) Approximation konvexer Körper durch konvexe Polytope., , Diploma, Vienna 
504 |a Müller, J., (1985), Approximation of a ball by random polytopes. Preprint; Rényi, A., Sulanke, R., Ueber die konvexe Hülle von n zufällig gewählten Punkten (1963) Z. Wahrsch. verw. Geb., 2, pp. 75-84 
504 |a Rényi, A., Sulanke, R., Ueber die konvexe Hülle von n zufällig gewählten Punkten II (1964) Z. Wahrsch. verw. Geb., 3, pp. 138-147 
504 |a Santaló, L.A., (1976) Integral Geometry and Geometric Probability., , Addison‐Wesley, Reading, MA 
504 |a Schneider, R., Random approximation of convex sets (1988) Proceedings of the Fourth International Conference in Stereology and Stochastic Geometry. J. Microsc., 151, pp. 211-227 
504 |a Wieacker, J.A., (1978) Einige Probleme der polyedrischen Approximation., , Diploma, Freiburg i. Br 
504 |a Woolhouse, W., (1867) Educational Times 
520 3 |a For any convex body K in d‐dimensional Euclidean space Ed(d≥2) and for integers n and i, n ≥ d + 1,1 ≤ i ≤ n, let V(d) n‐ii(K) be the expected volume of the convex hull Hn‐i, i of n independent random points, of which n‐i are uniformly distributed in the interior, the other i on the boundary of K. We develop an integral formula for V(d) n‐i, i(K) for the case that K is a d‐dimensional unit ball by considering an adequate decomposition of V(d) n‐i, i into d‐dimensional simplices. To solve the important case i = 0, that is the case in which all points are chosen at random from the interior of Bd, we require in addition Crofton's theorem on mean values. We illustrate the usefulness of our results by treating some special cases and by giving numerical values for the planar and the three‐dimensional cases. 1988 Blackwell Science Ltd  |l eng 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a CROFTON'S THEOREM ON MEAN VALUES 
690 1 0 |a EXPECTED VOLUME OF A RANDOM POLYTOPE 
690 1 0 |a GEOMETRIC PROBABILITIES 
690 1 0 |a INSCRIBED RANDOM POLYTOPES 
690 1 0 |a INTEGRAL GEOMETRY 
690 1 0 |a SET OF UNIFORM RANDOM POINTS 
690 1 0 |a STOCHASTIC GEOMETRY 
690 1 0 |a SYLVESTER'S PROBLEM 
773 0 |d 1988  |g v. 151  |h pp. 277-287  |k n. 3  |p J. Microsc.  |x 00222720  |w (AR-BaUEN)CENRE-925  |t Journal of Microscopy 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84986656862&doi=10.1111%2fj.1365-2818.1988.tb04688.x&partnerID=40&md5=9294a5ae9163aeb93cc6f1866a7b1779  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1365-2818.1988.tb04688.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00222720_v151_n3_p277_Affentranger  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222720_v151_n3_p277_Affentranger  |y Registro en la Biblioteca Digital 
961 |a paper_00222720_v151_n3_p277_Affentranger  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78960