Analytic regularization and the divergences of quantum field theories

We present a method of analytic regularization with which any element of the S-matrix becomes an analytic function of a complex parameter. The usual divergences appear simply as poles at the physical value of the parameter. The subtraction of these poles leads to the usual finite parts. A simple exa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bollini, C.G
Otros Autores: Giambiagi, J.J, Domínguez, A.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1964
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02602caa a22003137a 4500
001 PAPER-17871
003 AR-BaUEN
005 20230518204915.0
008 190411s1964 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-51249194550 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bollini, C.G. 
245 1 0 |a Analytic regularization and the divergences of quantum field theories 
260 |c 1964 
270 1 0 |m Bollini, C.G.; Departamento de Física, Facultad de Ciencias Exactas, Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
520 3 |a We present a method of analytic regularization with which any element of the S-matrix becomes an analytic function of a complex parameter. The usual divergences appear simply as poles at the physical value of the parameter. The subtraction of these poles leads to the usual finite parts. A simple example is discussed, in which the mathematical justification for these subtractions is given. In the consideration of this example we discuss the causal Green functions of the iterated D'Alembertian. They are constructed from the retarded and advanced solutions introduced by M. Riesz. The application to the self-energy of the electron is explicitly given. An heuristic deduction is then used to convert the problem of the evaluation of the self-energy into the problem of solving a differential equation. The self-energy integral is a formal solution of the latter equation, the finite part (with the pole subtracted) being a rigorous solution. © 1964 Società Italiana di Fisica.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas, Buenos Aires, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas, Buenos Aires, Argentina 
700 1 |a Giambiagi, J.J. 
700 1 |a Domínguez, A.G. 
773 0 |d 1964  |g v. 31  |h pp. 550-561  |k n. 3  |p Nuovo Cim  |x 00296341  |w (AR-BaUEN)CENRE-2201  |t Il Nuovo Cimento Series 10 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-51249194550&doi=10.1007%2fBF02733756&partnerID=40&md5=4cff98a4c1497b22d5f1715e768cd6d1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/BF02733756  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00296341_v31_n3_p550_Bollini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00296341_v31_n3_p550_Bollini  |y Registro en la Biblioteca Digital 
961 |a paper_00296341_v31_n3_p550_Bollini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78824