Annotation of entities and relations in Spanish radiology reports

Radiology reports express the results of a radiology study and contain information about anatomical entities, findings, measures and impressions of the medical doctor. The use of information extraction techniques can help physicians to access this information in order to understand data and to infer...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cotik, V.
Otros Autores: Filippo, D., Roller, R., Uszkoreit, H., Xu, F., Mitkov R., Temnikova I., Bontcheva K., Nikolova I., Angelova G.
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: Association for Computational Linguistics (ACL) 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08866caa a22009017a 4500
001 PAPER-17823
003 AR-BaUEN
005 20230518204912.0
008 190410s2017 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85045751535 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cotik, V. 
245 1 0 |a Annotation of entities and relations in Spanish radiology reports 
260 |b Association for Computational Linguistics (ACL)  |c 2017 
506 |2 openaire  |e Política editorial 
504 |a Chapman, W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G., A simple algorithm for identifying negated findings and diseases in discharge summaries (2001) J. Biomed Inform., 34 (5), pp. 301-310 
504 |a Cohen, J., A coefficient of agreement for nominal scales (1960) Educational and Psychological Measurement, 20 (1), pp. 37-46 
504 |a Cotik, V., Stricker, V., Vivaldi, J., Rodriguez, H., Syntactic methods for negation detection in radiology reports in Spanish (2015) ACL - Workshop on Replicability and Reproducibility in Natural Language Processing: Adaptative Methods, Resources and Software, , Buenos Aires, Argentina 
504 |a Cruz, N., Morante, R., López, M.J.M., Vázquez, J.M., Calderón, C.L.P., Annotating negation in Spanish clinical texts (2017) Proceedings of the Workshop Computational Semantics Beyond Events and Roles, pp. 53-58. , Association for Computational Linguistics, Valencia, Spain 
504 |a Do, B., Wu, A.S., Maley, J., Biswal, S., Automatic retrieval of bone fracture knowledge using natural language processing (2013) J Digit Imaging, 26 (4), pp. 709-713 
504 |a Lakhani, P., Langlotz, C.P., Automated detection of radiology reports that document non-routine communication of critical or significant results (2009) J Digit Imaging, 23 (6), pp. 647-657 
504 |a Marimon, M., Vivaldi, J., Bel, N., Annotation of negation in the iula Spanish clinical record corpus (2017) Proceedings of the Workshop Computational Semantics Beyond Events and Roles, pp. 43-52. , Association for Computational Linguistics, Valencia, Spain 
504 |a Morioka, C., Meng, F., Taira, R., Sayre, J., Zimmerman, P., Ishimitsu, D., Huang, J., El-Saden, S., Automatic classification of ultrasound screening examinations of the abdominal aorta (2016) J. Digit Imaging, 29 (6), pp. 742-748 
504 |a Mykowiecka, A., Marciniak, M., Kupsc, A., Rule-based information extraction from patients' clinical data (2009) Journal of Biomedical Informatics, 42 (5), pp. 923-936. , Biomedical Natural Language Processing 
504 |a Névéol, A., Grouin, C., Tannier, X., Hamon, T., Kelly, L., Goeuriot, L., Zweigenbaum, P., CLEF ehealth evaluation lab 2015 task lb: Clinical named entity recognition (2015) Working Notes of CLEF 2015 - Conference and Labs of the Evaluation Forum, , Toulouse, France, September 8-11, 2015 
504 |a Oronoz, M., Gojenola, K., Perez, A., De Ilarraza, A.D., Casillas, A., On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions (2015) Journal of Biomedical Informatics, 56, pp. 318-332 
504 |a Pradhan, S., Elhadad, N., South, B.R., Martinez, D., Christensen, L., Vogel, A., Suominen, H., Savova, G., Evaluating the state of the art in disorder recognition and normalization of the clinical narrative (2014) Journal of the American Medical Informatics Association 
504 |a Pradhan, S., Elhadad, N., South, B.R., Martinez, D., Christensen, L.M., Vogel, A., Suominen, H., Savova, G.K., Task 1: ShARe/CLEF eHealth evaluation lab 2013 (2013) Working Notes for CLEF 2013 Conference, , Valencia, Spain, September 23-26, 2013 
504 |a Roller, R., Uszkoreit, F.X.H., Seiffe, L., Mikhailov, M., Staeck, O., Budde, K., Halleck, F., Schmidt, D., A fine-grained corpus annotation schema of German nephrology records (2016) Proceedings of the Clinical Natural Language Processing Workshop, 28 (1), pp. 69-77 
504 |a Sevenster, M., Van Ommering, R., Qian, Y., Automatically correlating clinical findings and body locations in radiology reports using MedLEE (2012) J Digit Imaging, 25 (2), pp. 240-249 
504 |a Shatkay, H., John Wilbur, W., Rzhetsky, A., (2005) Annotation Guidelines, , [Online; accessed 28-04-2017] 
504 |a Skeppstedt, M., Kvist, M., Nilsson, G.H., Dalianis, H., Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study (2014) Journal of Biomedical Informatics, 49, pp. 148-158 
504 |a Stenetorp, P., Pyysalo, S., Topic, G., Ohta, T., Ananiadou, S., Tsujii, J., Brat: A web-based tool for NLP-assisted text annotation (2012) Proceedings of the Demonstrations Session at EACL 2012, , Association for Computational Linguistics, Avignon, France 
504 |a Uzuner, O., South, B.R., Shen, S., DuVall, S.L., 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text (2011) Journal of the American Medical Informatics Association, 18 (5), pp. 552-556 
504 |a John Wilbur, W., Rzhetsky, A., Shatkay, H., New directions in biomedical text annotation: Definitions, guidelines and corpus construction (2006) BMC Bioinformatics, 356 (7)A4 - 
520 3 |a Radiology reports express the results of a radiology study and contain information about anatomical entities, findings, measures and impressions of the medical doctor. The use of information extraction techniques can help physicians to access this information in order to understand data and to infer further knowledge. Supervised machine learning methods are very popular to address information extraction, but are usually domain and language dependent. To train new classification models, annotated data is required. Moreover, annotated data is also required as an evaluation resource of information extraction algorithms. However, one major drawback of processing clinical data is the low availability of annotated datasets. For this reason we performed a manual annotation of radiology reports written in Spanish. This paper presents the corpus, the annotation schema, the annotation guidelines and further insight of the data. © 2018 Association for Computational Linguistics (ACL). All rights reserved.  |l eng 
536 |a Detalles de la financiación: Bundesministerium für Wirtschaft und Energie, 01MD16011F 
536 |a Detalles de la financiación: This research was supported by the German Federal Ministry of Economics and Energy (BMWi) through the project MACSS (01MD16011F). 
593 |a Departamento de Computatión, FCEyN, UBA, Argentina 
593 |a Hospital De Pediatría, Prof. Dr. Juan P. Garrahan, Argentina 
593 |a Language Technology Lab., DFKI, Berlin, Germany 
690 1 0 |a ARTIFICIAL INTELLIGENCE 
690 1 0 |a DATA HANDLING 
690 1 0 |a DEEP LEARNING 
690 1 0 |a INFORMATION RETRIEVAL 
690 1 0 |a INFORMATION USE 
690 1 0 |a LEARNING ALGORITHMS 
690 1 0 |a NATURAL LANGUAGE PROCESSING SYSTEMS 
690 1 0 |a RADIATION 
690 1 0 |a RADIOLOGY 
690 1 0 |a SUPERVISED LEARNING 
690 1 0 |a ANNOTATED DATASETS 
690 1 0 |a CLASSIFICATION MODELS 
690 1 0 |a INFORMATION EXTRACTION TECHNIQUES 
690 1 0 |a MANUAL ANNOTATION 
690 1 0 |a MEDICAL DOCTORS 
690 1 0 |a RADIOLOGY REPORTS 
690 1 0 |a SPANISH RADIOLOGY 
690 1 0 |a SUPERVISED MACHINE LEARNING 
690 1 0 |a DATA MINING 
700 1 |a Filippo, D. 
700 1 |a Roller, R. 
700 1 |a Uszkoreit, H. 
700 1 |a Xu, F. 
700 1 |a Mitkov R. 
700 1 |a Temnikova I. 
700 1 |a Bontcheva K. 
700 1 |a Nikolova I. 
700 1 |a Angelova G. 
711 2 |d 2 September 2017 through 8 September 2017  |g Código de la conferencia: 135740 
773 0 |d Association for Computational Linguistics (ACL), 2017  |g v. 2017-September  |h pp. 177-184  |p Int. Conf. Recent Adv. Nat. Lang. Proces., RANLP  |n International Conference Recent Advances in Natural Language Processing, RANLP  |x 13138502  |z 9789544520489  |t 11th International Conference on Recent Advances in Natural Language Processing, RANLP 2017 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045751535&doi=10.26615%2f978-954-452-049-6-025&partnerID=40&md5=2e29edf834c323a2511152b178fc8153  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.26615/978-954-452-049-6-025  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13138502_v2017-September_n_p177_Cotik  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13138502_v2017-September_n_p177_Cotik  |y Registro en la Biblioteca Digital 
961 |a paper_13138502_v2017-September_n_p177_Cotik  |b paper  |c PE 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
999 |c 78776