Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region

Flat subduction segments are generally related to cold lithospheric zones, which suggest low Heat flow values and therefore a deeper Curie isotherm. In this study we perform a geophysical analysis by using high - resolution magnetic data, obtaining shallower Curie point depths through the Chilean-Pa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sánchez, M.A
Otros Autores: Ariza, J.P, García, H.P.A, Gianni, G.M, Weidmann, M.C, Folguera, A., Lince Klinger, F., Martinez, M.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 23841caa a22016457a 4500
001 PAPER-17818
003 AR-BaUEN
005 20230518204911.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85030699916 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Sánchez, M.A. 
245 1 0 |a Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region 
260 |b Elsevier Ltd  |c 2018 
270 1 0 |m Sánchez, M.A.; CONICET, Instituto Geofísico y Sismológico Ing. Volponi, Universidad Nacional de San Juan, Ruta 12, Km. 17, Argentina; email: 1marcossanchez@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Alfe, D., Gillan, M.J., Price, G.D., Thermodynamics from first principles: temperature and composition of the Earth's core (2003) Mineral. Mag., 67 (1), pp. 113-123 
504 |a Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., Isacks, B.L., Foreland shortening and crustal balancing in the Andes at 30 S latitude (1990) Tectonics, 9 (4), pp. 789-809 
504 |a Alvarado, P., Beck, S., Zandt, G., Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modelling (2007) Geophys. J. Int., 170 (2), pp. 858-875 
504 |a Alvarado, P., Pardo, M., Gilbert, H., Miranda, S., Anderson, M., Saez, M., Beck, S., Flat-slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina (2009) Geol. Soc. Am. Memoirs, 204, pp. 261-278 
504 |a Álvarez, O., Gimenez, M., Braitenberg, C., Folguera, A., GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region (2012) Geophys. J. Int., 190 (2), pp. 941-959 
504 |a Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, C., GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin (2014) Tectonophysics, 622, pp. 198-215 
504 |a Álvarez, O., Gimenez, M., Folguera, A., Spagnotto, S., Bustos, E., Baez, W., Braitenberg, C., New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models (2015) Elsevier Editor. Syst. J. Geodyn., 91, pp. 65-88 
504 |a Amante, C., Eakins, B.W., ETOPO1 1 Arc- Minute Global Relief Model: Procedures, Data Sources and Analysis (2009), first ed. NOAA, National Geophysical Data Center Boulder, Colorado, USA pp: 54; Anderson, M., Alvarado, P., Zandt, G., Beck, S., Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina (2007) Geophys. J. Int., 171 (1), pp. 419-434 
504 |a Barazangi, M., Isacks, B., Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America (1976) Geology, 4, pp. 686-692 
504 |a Barazangi, M., Isacks, B.L., Subduction of the Nazca plate beneath Peru: evidence from spatial distribution of earthquakes (1979) Geophys. J. Int., 57 (3), pp. 537-555 
504 |a Barthelmes, F., (2009) Definition of Functionals of the Geopotential and their Calculation from Spherical Harmonic Models, 104132. , http://publications.iass-potsdam.de/pubman/item/escidoc, (3), 0902–2 
504 |a Barthelmes, F., Global Models. Encyclopedia of Geodesy (2014), pp. 1-9. , Springer International Publishing; Blackwell, D.D., Heat-flow determinations in the northwestern United States (1969) J. Geophys. Res., 74 (4), pp. 992-1007 
504 |a Blackwell, D.D., The thermal structure of the continental crust (1971) Struct. Phys. Prop. earth's crust, pp. 169-184 
504 |a Blakely, R., Potential Theory in Gravity and Magnetic Applications (1995), Cambridge University Press 441 pp; Borzotta, E., Mamaní, M.J., Venencia, J.E., Preliminary Magnetotelluric study of Ambato and Valle Fértil Lineaments in Bermejo Basin and Sierra de Valle Fértil, San Juan, Argentina (2009) Acta Geodaetica et Geophysica Hungarica, 44 (2), pp. 157-166 
504 |a Braitenberg, C., Mariani, P., Ebbing, J., Sprlak, M., The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields (2011) Geol. Soc. Lond. Spec. Publ., 357 (1), pp. 329-341 
504 |a Briggs, I.C., Machine contouring using minimum curvature (1974) Geophysics, 39 (1), pp. 39-48 
504 |a Brocher, T.M., Empirical relations between elastic wave speeds and density in the Earth's crust (2005) Bull. Seismol. Soc. Am., 95 (6), pp. 2081-2092 
504 |a Cahill, T., Isacks, B.L., Seismicity and shape of the subducted Nazca plate (1992) J. Geophys. Res. Solid Earth, 97 (B12), pp. 17503-17529 
504 |a Cheesman, S., MacLeod, I., Hollyer, G., A new, rapid, automated grid stitching algorithm (1998) Explor. Geophys., 29 (3-4), pp. 301-305 
504 |a Chulick, G.S., Detweiler, S., Mooney, W.D., Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins (2013) J. S. Am. Earth Sci., 42, pp. 260-276 
504 |a Cloos, M., Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts (1993) Geol. Soc. Am. Bull., 105 (6), pp. 715-737 
504 |a Collo, G., Dávila, F.M., Nóbile, J., Astini, R.A., Gehrels, G., Clay mineralogy and thermal history of the Neogene Vinchina Basin, central Andes of Argentina: analysis of factors controlling the heating conditions (2011) Tectonics, 30 (4) 
504 |a Collo, G., Ezpeleta, M., Dávila, F., Gimenez, M., Soler, S., Martina, F., Ávila, P., Shiuma, M., Basin termal structure in the Chilean-Pampean flat subduction zone (2017) The Making of the Chilean-argentinian Andes, , (in press) 
504 |a Cornaglia, L., Ruiz, F., Introcaso, A., Análisis cortical de la cuenca Golfo de San Jorge utilizando anomalías de Bouguer y ondulaciones del geoide (2009) Rev. la Asoc. Geol. Argent., 65 (3), pp. 504-515 
504 |a Cortés, J., Casa, A., Yamin, M., Pasini, M., Terrizzano, C., Unidades morfotectónicas, estructuras oblicuas y patrones de distribución de la deformación cuaternaria en la precordillera de cuyo (28°-33°S) (2014) Actas XIX Congreso Geológico Argentino, Córdoba. S20-14 
504 |a Cortés, J.M., Casa, A., Pasini, M., Yamín, M., Terrizzano, C., Fajas oblicuas de deformación neotectónica en Precordillera y Cordillera Frontal (31° 30′ - 33° 30′ LS): controles paleotectónicos (2006) Rev. la Asoc. Geol. Argent., 61 (4), pp. 639-646 
504 |a Currie, C.A., Hyndman, R.D., Wang, K., Kostoglodov, V., Thermal models of the Mexico subduction zone: implications for the megathrust seismogenic zone (2002) J. Geophys. Res. Solid Earth, 107 (B12) 
504 |a Dávila, F.M., Lithgow-Bertelloni, C., Dynamic uplift during slab flattening (2015) Earth Planet. Sci. Lett., 425, pp. 34-43 
504 |a Dobrin, M.B., Introduction to Geophysical Prospecting (1976), McGraw-hill; Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.-M., Marty, J.C., Flechtner, F., Balmino, G., Biancale, R., EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (2014) GFZ Data Serv. 
504 |a Frost, B.R., Shive, P.N., Magnetic mineralogy of the lower continental crust (1986) J. Geophys. Res. Solid Earth, 91 (B6), pp. 6513-6521 
504 |a Gans, C.R., Beck, S.L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results (2011) Geophys. J. Int., 186 (1), pp. 45-58. , Journal of Geophysical Research. 91.6513–6521 
504 |a Garcia, E.S., Sandwell, D.T., Luttrell, K.M., An iterative spectral solution method for thin elastic plate flexure with variable rigidity (2015) Geophys. J. Int., 200 (2), pp. 1012-1028 
504 |a Gianni, G.M., García, H.P., Lupari, M., Pesce, A., Folguera, A., Plume overriding triggers shallow subduction and orogeny in the southern Central Andes (2017) Gondwana Res., 49, pp. 387-395 
504 |a Gilbert, H., Beck, S., Zandt, G., Lithospheric and upper mantle structure of central Chile and Argentina (2006) Geophys. J. Int., 165 (1), pp. 383-398 
504 |a Gimenez, M.E., Martinez, M.P., Jordan, T., Ruíz, F., Lince Klinger, F., Gravity characterization of the La Rioja valley basin, Argentina (2009) Geophysics, 74 (3), pp. B83-B94 
504 |a Gutscher, M.A., Olivet, J.L., Aslanian, D., Eissen, J.P., Maury, R., The “lost Inca Plateau”: cause of flat subduction beneath Peru? (1999) Earth Planet. Sci. Lett., 171 (3), pp. 335-341 
504 |a Gutscher, M.A., Spakman, W., Bijwaard, H., Engdahl, E.R., Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin (2000) Tectonics, 19 (5), pp. 814-833 
504 |a Gutscher, M.A., Andean subduction styles and their effect on thermal structure and interplate coupling (2002) J. S. Am. Earth Sci., 15 (1), pp. 3-10 
504 |a Hamza, V.M., Cardoso, R.R., Ponte Neto, C.F., Spherical harmonic analysis of earth's conductive heat flow (2008) Int. J. Earth Sci., 97 (2), pp. 205-226 
504 |a Hamza, V.M., Gomes, A.J.L., Ferreira, L.E.T., Status report on geothermal energy developments in Brazil (2005) Natural Gas, 14. , 7-5 
504 |a Henry, S.G., Pollack, H.N., Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru (1988) J. Geophys. Res. Solid Earth, 93 (B12), pp. 15153-15162 
504 |a Hinze, W.J., Bouguer reduction density, why 2.67? (2003) Geophysics, 68 (5), pp. 1559-1560 
504 |a Hinze, W.J., Von Frese, R.R., Saad, A.H., Gravity and Magnetic Exploration: Principles, Practices, and Applications (2013), Cambridge University Press; Hofmann-Wellenhof, B., Moritz, H., Physical Geodesy (2006), Springer Science & Business Media; Introcaso, A., Geodesia Física (2006), Instituto de Fisiografía y Geología“ Dr. Alfredo Castellanos”; Jones, R.E., De Hoog, J.C.M., Kirstein, L.A., Kasemann, S.A., Hinton, R., Elliott, T., Litvak, V.D., Temporal variations in the influence of the subducting slab on Central Andean arc magmas: evidence from boron isotope systematics (2014) Earth Planet. Sci. Lett., 408, pp. 390-401 
504 |a Jones, R.E., Kirstein, L.A., Kasemann, S.A., Dhuime, B., Elliott, T., Litvak, V.D., Alonso, R., Hinton, R., Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: insights from the O and Hf isotopic composition of zircon (2015) Geochimica Cosmochimica Acta, 164, pp. 386-402 
504 |a Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V.D., Poma, S., Alonso, R.N., Hinton, R., The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes (2016) Lithos, 262, pp. 169-191 
504 |a Jordan, T., Isacks, B., Allmendinger, R.W., Bewer, J., Ramos, V.A., Ando, C., Andean tectonics related to geometry of subducted Nazca Plate (1983) Geol. Soc. Am. Bull., 94, pp. 341-361 
504 |a Kane, M.F., A comprehensive system of terrain corrections using a digital computer (1962) Geophysics, 27 (4), pp. 455-462 
504 |a Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Gordillo, C.E., Tertiary Andean magmatism in Chile and Argentina between 28 S and 33 S: Correlation of magmatic chemistry with a changing Benioff zone (1988) J. S. Am. Earth Sci., 1 (1), pp. 21-38 
504 |a Kay, S.M., Mpodozis, C., Ramos, V.A., Munizaga, F., Magma source variations for mid–late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33 S) (1991) Geol. Soc. Am. Special Pap., 265, pp. 113-138 
504 |a Kay, S.M., Abbruzzi, J.M., Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30 S and 32 S (1996) Tectonophysics, 259 (1-3), pp. 15-28 
504 |a Kay, S.M., Mpodozis, C., Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab (2002) J. S. Am. Earth Sci., 15 (1), pp. 39-57 
504 |a Köther, N., Götze, H.J., Gutknecht, B.D., Jahr, T., Jentzsch, G., Lücke, O.H., Mahatsente, R., Zeumann, S., The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? (2012) J. Geodyn., 59, pp. 207-218 
504 |a Li, X., Vertical resolution: gravity versus vertical gravity gradient (2001) Lead. Edge, 20 (8), pp. 901-904 
504 |a Li, C.F., Lu, Y., Wang, J., A global reference model of Curie-point depths based on EMAG2 (2017) Sci. Rep., 7 
504 |a Lince Klinger, F., Martinez, M.P., Gimenez, M.E., Ruiz, F., Álvarez, O., Modelo gravimétrico en la Fosa de Gastre, Provincia de Chubut, Argentina (2011) Bol. Geol. Min., 122 (3), pp. 299-310 
504 |a Lowry, A.R., Ribe, N.M., Smith, R.B., Dynamic elevation of the Cordillera, western United States (2000) J. Geophys. Res., 105 (B10), pp. 23-371 
504 |a Manea, V.C., Manea, M., Kostoglodov, V., Sewell, G., Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport (2005) Phys. Earth Planet. Interiors, 149 (1), pp. 165-186 
504 |a Manea, V.C., Manea, M., Flat-slab thermal structure and evolution beneath central Mexico (2011) Pure Appl. Geophys., 168 (8), pp. 1475-1487 
504 |a Manea, V.C., Pérez-Gussinyé, M., Manea, M., Chilean flat slab subduction controlled by overriding plate thickness and trench rollback (2012) Geology, 40 (1), pp. 35-38 
504 |a Manea, V.C., Manea, M., Ferrari, L., Orozco, T., Valenzuela, R.W., Husker, A., Kostoglodov, V., A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile (2016) Tectonophysics, 695, pp. 27-52 
504 |a Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., Pardo, M., Flat versus normal subduction zones: a comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29–35 S) (2014) Geophys. J. Int., 199 (3), pp. 1633-1654 
504 |a Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Caratori Tontini, F., EMAG2: a 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements (2009) Geochem. Geophys. Geosystems, 10 (8) 
504 |a Murphy, J.B., Oppliger, G.L., Brimhall, G.H., Hynes, A., Plume-modified orogeny: an example from the western United States (1998) Geology, 26, pp. 731-734 
504 |a Nagy, D., The gravitational attraction of a right rectangular prism (1966) Geophysics, 31 (2), pp. 362-371 
504 |a Oldenburg, D.W., The inversion and interpretation of gravity anomalies (1974) Geophysics, 39 (4), pp. 526-536 
504 |a Parker, R.L., The rapid calculation of potential anomalies (1973) Geophys. J. Int., 31 (4), pp. 447-455 
504 |a Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., An earth gravitational model to degree 2160: EGM2008 (2008) EGU General Assem., 2008 (4). , 4–2 
504 |a Pesce, A., Miranda, F., Catálogo de manifestaciones termales de la República Argentina (2003), pp. 1666-3462. , Vol. I-II Región Noroeste. SEGEMAR, Buenos Aires; Pilger, R.H., Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes (1981) Geol. Soc. Am. Bull., 92 (7), pp. 448-456 
504 |a Ramos, V.A., Cristallini, E.C., Pérez, D.J., The pampean flat-slab of the central Andes (2002) J. S. Am. Earth Sci., 15 (1), pp. 59-78 
504 |a Ravat, D., Pignatelli, A., Nicolosi, I., Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data (2007) Geophys. J. Int., 169 (2), pp. 421-434 
504 |a Reguzzoni, M., Sampietro, D., GEMMA: an Earth crustal model based on GOCE satellite data (2015) Int. J. Appl. Earth Obs. Geoinf., 35, pp. 31-43 
504 |a Ross, H.E., Blakely, R.J., Zoback, M.D., Testing the use of aeromagnetic data for the determination of Curie depth in California (2006) Geophysics, 71 (5), pp. 51-59 
504 |a Roy, R.F., Blackwell, D.D., Decker, E.R., Continental heat flow (1972) Nat. solid Earth, pp. 506-543 
504 |a Ruiz, F., Introcaso, A., Curie point depths beneath Precordillera Cuyana and Sierras Pampeanas obtained from spectral analysis of magnetic anomalies (2004) Gondwana Res., 7 (4), pp. 1133-1142 
504 |a Ruiz, F., Luna, E., Vargas, D., Gimenez, M., Martinez, P., Importancia del Ajuste y Nivelación de Datos Aeromagnéticos a partir de Magnetometría Terrestre (2011) 18° Congreso Geológico Argentino, Actas, pp. 1198-1199. , (Neuquén) 
504 |a Sampietro, D., Reguzzoni, M., Negretti, M., The GEMMA crustal model: first validation and data distribution (2013) Proceedings of the ESA Living Planet Symposium, , ESA SP-722 Edinburgh (UK) 9–13 September 2013 
504 |a Sánchez, M.A., Winocur, D., Álvarez, O., Folguera, A., Martinez, M.P., Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data (2017) J. S. Am. Earth Sci., 73, pp. 153-167 
504 |a Shapiro, N.M., Ritzwoller, M.H., Thermodynamic constraints on seismic inversions (2004) Geophys. J. Int., 157 (3), pp. 1175-1188 
504 |a Smalley, R.F., Isacks, B.L., A high-resolution local network study of the Nazca Plate Wadati-Benioff Zone under western Argentina (1987) J. Geophys. Res. Solid Earth, 92 (B13), pp. 13903-13912 
504 |a Soler, S.R., Métodos Espectrales para la Determinación de la Profundidad del Punto de Curie y Espesor Elástico de la Corteza Terrestre (2015), Facultad de Ciencias Exactas, Ingeniería y Agrimensura (FCEIA), Universidad Nacional de Rosario (UNR) (Tesis de Grado para Título de Licenciado en Física. Inédito); Springer, M., Förster, A., Heat-flow density across the Central Andean subduction zone (1998) Tectonophysics, 291 (1), pp. 123-139 
504 |a Stauder, W., Mechanism and spatial distribution of Chilean earthquakes with relation to subduction of the oceanic plate (1973) J. Geophys. Res., 78 (23), pp. 5033-5061 
504 |a Tanaka, A., Okubo, Y., Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia (1999) Tectonophysics, 306 (3), pp. 461-470 
504 |a Tassara, A., Götze, H.J., Schmidt, S., Hackney, R., Three-dimensional density model of the Nazca plate and the Andean continental margin (2006) J. Geophys. Res. Solid Earth, 111 (B9) 
504 |a Turcotte, D.L., Schubert, G., Geodynamics (2002), Cambridge University Press New York; Vlaar, N.J., Van Keken, P.E., Van den Berg, A.P., Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle (1994) Earth Planet. Sci. Lett., 121 (1-2), pp. 1-18 
504 |a Van Hunen, J., Van Den BERG, A.P., Vlaar, N.J., On the role of subducting oceanic plateaus in the development of shallow flat subduction (2002) Tectonophysics, 352 (3), pp. 317-333 
504 |a Watts, A.B., Isostasy and Flexure of the Lithosphere (2001), Cambridge University Press; Weidmann, C., Spagnotto, S., Giménez, M., Martínez, P., Álvarez, O., Sánchez, M., Lince Klinger, F., Crustal structure and tectonic setting of the south central Andes from gravimetric analysis (2013) Geofís. Int., pp. 197-208. , 52-3 
504 |a Weidmann, C., Ariza, J.P., Sánchez, M., Gimenez, M., Christiansen, R., Magnetic crustal features in the Vinchina basin (2017) J. S. Am. Earth Sci., 76, pp. 94-100 
504 |a Ziagos, J.P., Blackwell, D.D., Mooser, F., Heat flow in southern Mexico and the thermal effects of subduction (1985) J. Geophys. Res. Solid Earth, 90 (B7), pp. 5410-5420 
520 3 |a Flat subduction segments are generally related to cold lithospheric zones, which suggest low Heat flow values and therefore a deeper Curie isotherm. In this study we perform a geophysical analysis by using high - resolution magnetic data, obtaining shallower Curie point depths through the Chilean-Pampean flat-slab zone. Then using temperatures from borehole data and Curie Point Depths, we performed a Heat Flow map which indicates the existence of mean to high thermal anomalies across the Chilean - Pampean flat-slab. These results were contrasted with Elastic Thickness map (Te) obtained from the Eigen-6C4 gravity model. Low Te values acquired indicate zones with weak mechanical behavior in correspondence to thermal anomalous zones. This spatial correlation suggests that the local high thermal anomalies are conditioning the mechanical behavior of the lithosphere in the study area and the locations of geothermal sources. Overall, our results indicate that the thermal structure of the flat-slab segment is more heterogeneous than previously thought. This has implications for evolution, maturity and fluid circulation in foreland basins of the Main and Frontal cordilleras and the Precordillera thrust belts. Finally, further studies will allow improving our database as well as extending our understanding of the thermal structure of the Chilean-Pampean flat-slab. © 2017 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We would like to express our thanks to the Grosso Group Company and the Argentinean Geological Mining Service (SEGEMAR) for their aero-magnetic flight data. This study has been partially financed by projects PIO 150-201501-00039-CO (Oriented Research Projects - CONICET- Secretariat of Science and Technology . Government of San Juan ). 
593 |a CONICET, Instituto Geofísico y Sismológico Ing. Volponi, Universidad Nacional de San Juan, Ruta 12, Km. 17, San Juan, CP 5407, Argentina 
593 |a CONICET, Inst. Estudios Andinos “Don Pablo Groeber”, Dep. Cs. Geol, FCEN, U.B.A, Buenos Aires, Argentina 
690 1 0 |a CHILEAN-PAMPEAN FLAT-SLAB 
690 1 0 |a CURIE POINT DEPTH 
690 1 0 |a ELASTIC THICKNESS 
690 1 0 |a HEAT FLOW 
690 1 0 |a MAGNETIC DATA 
690 1 0 |a CORDILLERA 
690 1 0 |a CURIE POINT 
690 1 0 |a FORELAND BASIN 
690 1 0 |a HEAT FLOW 
690 1 0 |a LITHOSPHERIC STRUCTURE 
690 1 0 |a MAGNETIC FIELD 
690 1 0 |a SLAB 
690 1 0 |a THERMAL STRUCTURE 
690 1 0 |a THERMOMECHANICS 
690 1 0 |a CALLUNA VULGARIS 
700 1 |a Ariza, J.P. 
700 1 |a García, H.P.A. 
700 1 |a Gianni, G.M. 
700 1 |a Weidmann, M.C. 
700 1 |a Folguera, A. 
700 1 |a Lince Klinger, F. 
700 1 |a Martinez, M.P. 
773 0 |d Elsevier Ltd, 2018  |g v. 87  |h pp. 247-257  |p J. South Am. Earth Sci.  |x 08959811  |w (AR-BaUEN)CENRE-1080  |t Journal of South American Earth Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030699916&doi=10.1016%2fj.jsames.2017.09.036&partnerID=40&md5=3d55a5d6c564e45491bc071a074e9aba  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jsames.2017.09.036  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08959811_v87_n_p247_Sanchez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08959811_v87_n_p247_Sanchez  |y Registro en la Biblioteca Digital 
961 |a paper_08959811_v87_n_p247_Sanchez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 78771