Using prosody to classify discourse relations

This work aims to explore the correlation between the discourse structure of a spoken monologue and its prosody by predicting discourse relations from different prosodic attributes. For this purpose, a corpus of semi-spontaneous monologues in English has been automatically annotated according to the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kleinhans, J.
Otros Autores: Farrús, M., Gravano, A., Pérez, J.M, Lai, C., Wanner, L., Lacerda F., Strombergsson S., Wlodarczak M., Heldner M., Gustafson J., House D., Amazon Alexa; Apple; DiDi; et al.; Furhat Robotics; Microsoft
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: International Speech Communication Association 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09532caa a22010337a 4500
001 PAPER-17809
003 AR-BaUEN
005 20230518204911.0
008 190410s2017 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85039154207 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Kleinhans, J. 
245 1 0 |a Using prosody to classify discourse relations 
260 |b International Speech Communication Association  |c 2017 
506 |2 openaire  |e Política editorial 
504 |a Hirschberg, J., Litman, D., Now let's talk about now: Identifying cue phrases intonationally (1987) Proceedings of the 25th Annual Meeting on Association for Computational Linguistics, pp. 163-171. , Association for Computational Linguistics 
504 |a Hirschberg, J., Litman, D., Pierrehumbert, J.B., Ward, G., Intonation and the intentional structure of discourse (1987) Proceedings of the 10th International Joint Conference on Artificial Intelligence, 2 (1), pp. 636-639 
504 |a Murray, G., Renals, S., Taboada, M., Prosodic correlates of rhetorical relations Proceedings of the HLT-NAACL 2006 Workshop on Analyzing Conversations in Text and Speech, 2006, pp. 1-7. , June 
504 |a Mann, W.C., Thompson, S.A., (1988) Rhetorical Structure Theory: Toward A Functional Theory of Text Organization, pp. 243-281 
504 |a Zwicky, A., Clitics and particles (1985) Language, 61 (2), pp. 283-305 
504 |a Fraser, B., What are discourse markers? (1999) Journal of Pragmatics, 31, pp. 931-952 
504 |a Louwerse, M.M., Mitchell, H., Towards a taxonomy of a set of discourse markers in dialog: A theoretical and computational linguistic account (2003) Discourse Processes, 35 (1), pp. 199-239 
504 |a Schiffrin, D., (1988) Discourse Markers, , Cambridge University Press 
504 |a Fries, C.C., (1973) The Structure of English: An Introduction to the Construction of English Sentences, , Longman 
504 |a Knott, A., Dale, R., Using linguistic phenomena to motivate a set of coherence relations (1994) Discourse Processes, 18, pp. 35-62 
504 |a Taboada, M., Discourse markers as signals (or not) of rhetorical relations (2006) Journal of Pragmatics, 38, pp. 567-592 
504 |a Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B., Stolcke, A., The icsi meeting corpus. Acoustics, speech, and signal processing, 2003 (2003) Proceedings.(ICASSP03). 2003 IEEE International Conference on, 1 
504 |a Farrús, M., Lai, C., Moore, J.D., Paragraph-based prosodic cues for speech synthesis applications (2016) Proceedings of the 8th International Conference on Speech Prosody (SP 2016) 
504 |a Feng, V.W., Hirst, G., A linear-time bottom-up discourse parser with constraints and post-editing (2014) Acl, pp. 511-521 
504 |a Heilman, M., Sagae, K., (2015) Fast Rhetorical Structure Theory Discourse Parsing, , http://arxiv.org/abs/1505.02425 
504 |a Surdeanu, M., Hicks, T., Valenzuela-Escárcega, M.A., Two practical rhetorical structure theory parsers (2015) Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 1-5 
504 |a Hernault, H., Prendinger, H., DuVerle, D.A., Ishizuka, M., HILDA: A discourse parser using Support Vector Machine classification (2010) Dialogue & Discourse, 1 (3), pp. 1-33 
504 |a Liu, Y., Chawla, N.V., Harper, M.P., Shriberg, E., Stolcke, A., A study in machine learning from imbalanced data for sentence boundary detection in speech (2006) Computer Speech & Language, 20 (4), pp. 469-494 
504 |a Witten, I., Frank, E., Hall, M., Pal, C., The WEKA workbench. Online appendix for data mining: Practical machine learning tools and techniques (2016) Ser. The Morgan Kaufmann Series in Data Management Systems, , Fourth Edition Elsevier Science 
504 |a Gravano, A., Benus, S., Hirschberg, J., Mitchell, S., Vovsha, I., Classification of discourse functions of affirmative words in spoken dialogue (2007) Interspeech, pp. 1613-1616 
504 |a Lai, C., What do you mean, you're uncertain?: The interpretation of cue words and rising intonation in dialogue (2010) Interspeech, pp. 1-4 
504 |a Domínguez, M., Farrús, M., Burga, A., Wanner, L., The information structureprosody language interface revisited (2014) Proceedings of the 7th International Conference on Speech Prosody (SP2014), pp. 539-543. , Dublin, IrelandA4 - Amazon Alexa; Apple; DiDi; et al.; Furhat Robotics; Microsoft 
520 3 |a This work aims to explore the correlation between the discourse structure of a spoken monologue and its prosody by predicting discourse relations from different prosodic attributes. For this purpose, a corpus of semi-spontaneous monologues in English has been automatically annotated according to the Rhetorical Structure Theory, which models coherence in text via rhetorical relations. From corresponding audio files, prosodic features such as pitch, intensity, and speech rate have been extracted from different contexts of a relation. Supervised classification tasks using Support Vector Machines have been performed to find relationships between prosodic features and rhetorical relations.Preliminary results show that intensity combined with other features extracted from intra- and intersegmental environments is the feature with the highest predictability for a discourse relation. The prediction of rhetorical relations from prosodic features and their combinations is straightforwardly applicable to several tasks such as speech understanding or generation. Moreover, the knowledge of how rhetorical relations should be marked in terms of prosody will serve as a basis to improve speech synthesis applications and make voices sound more natural and expressive. Copyright © 2017 ISCA.  |l eng 
536 |a Detalles de la financiación: Ministry of Economy, Trade and Industry, METI 
536 |a Detalles de la financiación: Air Force Office of Scientific Research 
536 |a Detalles de la financiación: 645012 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2014-1561 
536 |a Detalles de la financiación: U.S. Air Force 
536 |a Detalles de la financiación: This work is part of the KRISTINA project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement number 645012. The second author is partially funded by the Spanish Ministry of Economy, Industry and Competitiveness through the Ramón y Cajal program. The third and fourth authors are partially funded by ANPCYT PICT 2014-1561, and the Air Force Office of Scientific Research, Air Force Material Command, USAF under Award No. FA9550-15-1-0055. 
593 |a TALN Research Group, DTIC, Universitat Pompeu Fabra, Barcelona, Spain 
593 |a Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina 
593 |a Instituto de Investigación en Ciencias de la Computación, CONICET-UBA, Buenos Aires, Argentina 
593 |a School of Informatics, University of Edinburgh, Edinburgh, United Kingdom 
593 |a Catalan Institute for Research and Advanced Studies, Barcelona, Spain 
690 1 0 |a DISCOURSE STRUCTURE 
690 1 0 |a PROSODY 
690 1 0 |a RST 
690 1 0 |a SPEECH SYNTHESIS 
690 1 0 |a SUPPORT VECTOR MACHINES 
690 1 0 |a CONTINUOUS SPEECH RECOGNITION 
690 1 0 |a SPEECH 
690 1 0 |a SPEECH SYNTHESIS 
690 1 0 |a SUPPORT VECTOR MACHINES 
690 1 0 |a TEXT PROCESSING 
690 1 0 |a DISCOURSE STRUCTURE 
690 1 0 |a PROSODIC FEATURES 
690 1 0 |a PROSODY 
690 1 0 |a RHETORICAL RELATIONS 
690 1 0 |a RHETORICAL STRUCTURE THEORY 
690 1 0 |a SPEECH RATES 
690 1 0 |a SPEECH UNDERSTANDING 
690 1 0 |a SUPERVISED CLASSIFICATION 
690 1 0 |a SPEECH COMMUNICATION 
700 1 |a Farrús, M. 
700 1 |a Gravano, A. 
700 1 |a Pérez, J.M. 
700 1 |a Lai, C. 
700 1 |a Wanner, L. 
700 1 |a Lacerda F. 
700 1 |a Strombergsson S. 
700 1 |a Wlodarczak M. 
700 1 |a Heldner M. 
700 1 |a Gustafson J. 
700 1 |a House D. 
700 1 |a Amazon Alexa; Apple; DiDi; et al.; Furhat Robotics; Microsoft 
711 2 |d 20 August 2017 through 24 August 2017  |g Código de la conferencia: 132696 
773 0 |d International Speech Communication Association, 2017  |g v. 2017-August  |h pp. 3201-3205  |p Proc. Annu. Conf. Int. Speech. Commun. Assoc., INTERSPEECH  |n Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH  |x 2308457X  |t 18th Annual Conference of the International Speech Communication Association, INTERSPEECH 2017 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039154207&doi=10.21437%2fInterspeech.2017-710&partnerID=40&md5=c447d554f670afd0a0f51b0db1c8fc49  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.21437/Interspeech.2017-710  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_2308457X_v2017-August_n_p3201_Kleinhans  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2308457X_v2017-August_n_p3201_Kleinhans  |y Registro en la Biblioteca Digital 
961 |a paper_2308457X_v2017-August_n_p3201_Kleinhans  |b paper  |c PE 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
999 |c 78762