Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells

Pyrolysis of acid pretreated peanut (Arachis hypogaea) shells was examined in order to improve the yield of liquids (bio-oils) and the characteristics of the three kinds of pyrolysis products. Also, pyrolysis of the pristine shells was comparatively investigated. The acid pretreatment was carried ou...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gurevich Messina, L.I
Otros Autores: Bonelli, P.R, Cukierman, A.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13611caa a22011777a 4500
001 PAPER-17766
003 AR-BaUEN
005 20230518204908.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85025837088 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gurevich Messina, L.I. 
245 1 0 |a Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells 
260 |b Elsevier Ltd  |c 2017 
270 1 0 |m Cukierman, A.L.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. de Industrias, Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía (PINMATE), Int. Güiraldes 2620, Ciudad Universitaria, Argentina; email: analea@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Brosowski, A., Thrän, D., Mantau, U., Mahro, B., Erdmann, G., Adler, P., Stinner, W., Blanke, C., A review of biomass potential and current utilisation – status quo for 93 biogenic wastes and residues in Germany (2016) Biomass Bioenergy, 95, pp. 257-272 
504 |a Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S., A review on biomass as a fuel for boilers (2011) Renew. Sustain. Energy Rev., 15, pp. 2262-2289 
504 |a Kambo, H.S., Dutta, A., A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications (2015) Renew. Sustain. Energy Rev., 45, pp. 359-378 
504 |a Álvarez, A., Pizarro, C., García, R., Bueno, J.L., Spanish biofuels heating value estimation based on structural analysis (2015) Ind. Crops Prod., 77, pp. 983-991 
504 |a Louhichi, B., Belgaib, J., benamor, H., Hajji, N., Production of bio-ethanol from three varieties of dates (2013) Renew. Energy, 51, pp. 170-174 
504 |a Iha, O.K., Alves, F.C.S.C., Suarez, P.A.Z., de Oliveira, M.B.F., Meneghetti, S.M.P., Santos, B.P.T., Soletti, J.I., Physicochemical properties of Syagrus coronata and Acrocomia aculeata oils for biofuel production (2014) Ind. Crops Prod., 62, pp. 318-322 
504 |a Zhang, L., Xu, C., Champagne, P., Overview of recent advances in thermo-chemical conversion of biomass (2010) Energy Convers. Manag., 51, pp. 969-982 
504 |a Tripathi, M., Sahu, J.N., Ganesan, P., Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review (2016) Renew. Sustain. Energy Rev., 55, pp. 467-481 
504 |a Chiaramonti, D., Oasmaa, A., Solantausta, Y., Power generation using fast pyrolysis liquids from biomass (2007) Renew. Sustain. Energy Rev., 11, pp. 1056-1086 
504 |a Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., Chiaramonti, D., Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass (2014) Appl. Energy, 116, pp. 178-190 
504 |a Di Blasi, C., Branca, C., D'Errico, G., Degradation characteristics of straw and washed straw (2000) Thermochim. Acta, 364, pp. 133-142 
504 |a Das, P., Ganesh, A., Wangikar, P., Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products (2004) Biomass Bioenergy, 27, pp. 445-457 
504 |a Fahmi, R., Bridgwater, A.V., Donnison, I., Yates, N., Jones, J.M., The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability (2008) Fuel, 87, pp. 1230-1240 
504 |a Shi, L., Yu, S., Wang, F.-C., Wang, J., Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metals (2012) Fuel, 96, pp. 586-594 
504 |a Stefanidis, S.D., Heracleous, E., Patiaka, D.T., Kalogiannis, K.G., Michailof, C.M., Lappas, A.A., Optimization of bio-oil yields by demineralization of low quality biomass (2015) Biomass Bioenergy, 83, pp. 105-115 
504 |a Messina, L.G., Bonelli, P.R., Cukierman, A.L., Effect of mineral matter removal on pyrolysis of wood sawdust from an invasive species (2016) Energy Sources, Part A Recover. Util. Environ. Eff., 38, pp. 551-557 
504 |a Oudenhoven, S.R.G., Westerhof, R.J.M., Aldenkamp, N., Brilman, D.W.F., Kersten, S.R.A., Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production (2013) J. Anal. Appl. Pyrolysis, 103, pp. 112-118 
504 |a Liu, X., Bi, X.T., Removal of inorganic constituents from pine barks and switchgrass (2011) Fuel Process. Technol., 92, pp. 1273-1279 
504 |a Liu, S., Pan, J., Ma, Y., Qiu, F., Niu, X., Zhang, T., Yang, L., Three-in-one strategy for selective adsorption and effective separation of cis-diol containing luteolin from peanut shell coarse extract using PU/GO/BA-MOF composite (2016) Chem. Eng. J., 306, pp. 655-666 
504 |a Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, A., Characterization and prediction of biomass pyrolysis products (2011) Prog. Energy Combust. Sci., 37, pp. 611-630 
504 |a Akhtar, J., Saidina Amin, N., A review on operating parameters for optimum liquid oil yield in biomass pyrolysis (2012) Renew. Sustain. Energy Rev., 16, pp. 5101-5109 
504 |a Van Soest, P.J., Robertson, J.B., Lewis, B.A., Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition (1991) J. Dairy Sci., 74, pp. 3583-3597 
504 |a Rover, M.R., Johnston, P.A., Whitmer, L.E., Smith, R.G., Brown, R.C., The effect of pyrolysis temperature on recovery of bio-oil as distinctive stage fractions (2014) J. Anal. Appl. Pyrolysis, 105, pp. 262-268 
504 |a De Celis, J., Amadeo, N.E., Cukierman, A.L., In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater (2009) J. Hazard. Mater., 161, pp. 217-223 
504 |a Duan, F., Zhang, J.-P., Chyang, C.-S., Wang, Y.-J., Tso, J., Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation (2014) Fuel Process. Technol., 128, pp. 28-35 
504 |a Mourant, D., Wang, Z., He, M., Wang, X.S., Garcia-Perez, M., Ling, K., Li, C.-Z., Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil (2011) Fuel, 90, pp. 2915-2922 
504 |a Jiang, L., Hu, S., Sun, L., Su, S., Xu, K., He, L., Xiang, J., Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass (2013) Bioresour. Technol., 146, pp. 254-260 
504 |a Sukumaran, S., Kong, S.C., Modeling fuel NOx formation from combustion of biomass-derived producer gas in a large-scale burner (2013) Combust. Flame, 160, pp. 2159-2168 
504 |a Gonzalez, J.D., Kim, M.R., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., Pyrolysis of Biomass from Sustainable Energy Plantations: effect of mineral matter reduction on kinetics and charcoal pore structure (2008) Energy Sources, Part A Recover. Util. Environ. Eff., 30, pp. 809-817 
504 |a Collard, F.-X., Blin, J., A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin (2014) Renew. Sustain. Energy Rev., 38, pp. 594-608 
504 |a Kim, J.W., Lee, H.W., Lee, I.-G., Jeon, J.-K., Ryu, C., Park, S.H., Jung, S.-C., Park, Y.-K., Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood (2014) Renew. Energy, 65, pp. 41-48 
504 |a Raveendran, K., Ganesh, A., Khilart, K.C., Influence of mineral matter pyrolysis characteristics on biomass (1995) Fuel, 74, pp. 1812-1822 
504 |a Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H., Product distribution from fast pyrolysis of glucose-based carbohydrates (2009) J. Anal. Appl. Pyrol., 86, pp. 323-330 
504 |a Reichel, D., Klinger, M., Krzack, S., Meyer, B., Effect of ash components on devolatilization behavior of coal in comparison with biomass – product yields, composition, and heating values (2013) Fuel, 114, pp. 64-70 
504 |a Kumagai, S., Matsuno, R., Grause, G., Kameda, T., Yoshioka, T., Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4 (2015) Bioresour. Technol., 178, pp. 76-82 
504 |a Özçimen, D., Ersoy-Meriçboyu, A., Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials (2010) Renew. Energy, 35, pp. 1319-1324 
504 |a Encinar, J.M., González, J.F., González, J., Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions (2000) Fuel Process. Technol., 68, pp. 209-222 
504 |a Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis (2007) Fuel, 86, pp. 1781-1788 
520 3 |a Pyrolysis of acid pretreated peanut (Arachis hypogaea) shells was examined in order to improve the yield of liquids (bio-oils) and the characteristics of the three kinds of pyrolysis products. Also, pyrolysis of the pristine shells was comparatively investigated. The acid pretreatment was carried out employing a dilute HCl solution and it successfully diminished the ash content of the shells. Pyrolysis assays were performed in a fixed-bed reactor at different process temperatures (400 °C, 500 °C, and 600 °C). The maximum bio-oil yield was obtained at a temperature of 500 °C for both the pretreated and the pristine shells, but pyrolysis of the formers yielded more bio-oils than the untreated ones (42 wt% vs. 33 wt%). The increase of the process temperature resulted in a reduction of the solid (bio-char) generation for both samples. Demineralization also led to a further reduction of the bio-char yield. Regarding the products characteristics, neither the pretreatment nor the temperature had a noticeable influence on the elemental composition of the bio-oils. However, water content of the bio-oils was lower for the ones arising from pyrolysis of the demineralized shells although it increased with growing process temperature. Likewise, pyrolysis of the demineralized shells resulted in bio-chars with less ash, improving their potentialities as bio-fuels. Also, the bio-chars arising from the treated shells at the higher temperatures (500 °C and 600 °C) resulted in higher BET surface areas (up to 300 m2/g), pointing to their possible use as rough adsorbents or for further upgrading to activated carbons. © 2017 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: PICT 2012-2188 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 0183 
536 |a Detalles de la financiación: Universidad de Buenos Aires, 20020130100605BA 
536 |a Detalles de la financiación: The authors gratefully acknowledge Agencia Nacional de Promoci?n Cient?fica y Tecnol?gica (ANPCYT), (Grant Nr. PICT 2012-2188) Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) (Grant Nr. PIP 0183), and Universidad de Buenos Aires (UBA) (Grant Nr. 20020130100605BA) from Argentina, for financial support. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. de Industrias, Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía (PINMATE), Int. Güiraldes 2620, Ciudad Universitaria, Buenos Aires, C1428BGA, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, C1425FQB, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Depto. de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Junín 956, Buenos Aires, C1113AAD, Argentina 
690 1 0 |a BIO-CHAR 
690 1 0 |a BIO-OIL 
690 1 0 |a DEMINERALIZATION 
690 1 0 |a PEANUT SHELLS 
690 1 0 |a PYROLYSIS 
690 1 0 |a ACTIVATED CARBON 
690 1 0 |a BIOFUELS 
690 1 0 |a OILSEEDS 
690 1 0 |a PYROLYSIS 
690 1 0 |a BIO CHARS 
690 1 0 |a BIO OIL 
690 1 0 |a DEMINERALIZATION 
690 1 0 |a ELEMENTAL COMPOSITIONS 
690 1 0 |a FIXED BED REACTOR 
690 1 0 |a PEANUT SHELLS 
690 1 0 |a PROCESS TEMPERATURE 
690 1 0 |a PYROLYSIS PRODUCTS 
690 1 0 |a SHELLS (STRUCTURES) 
690 1 0 |a ACTIVATED CARBON 
690 1 0 |a BIOASSAY 
690 1 0 |a BIOFUEL 
690 1 0 |a BIOMINERALIZATION 
690 1 0 |a CHARCOAL 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a GROUNDNUT 
690 1 0 |a HYDROCHLORIC ACID 
690 1 0 |a PYROLYSIS 
690 1 0 |a SHELL 
690 1 0 |a ARACHIS HYPOGAEA 
700 1 |a Bonelli, P.R. 
700 1 |a Cukierman, A.L. 
773 0 |d Elsevier Ltd, 2017  |g v. 114  |h pp. 697-707  |p Renew. Energy  |x 09601481  |w (AR-BaUEN)CENRE-6652  |t Renewable Energy 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025837088&doi=10.1016%2fj.renene.2017.07.065&partnerID=40&md5=75d1528a4127eef4cc8b11f796c31859  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.renene.2017.07.065  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09601481_v114_n_p697_GurevichMessina  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09601481_v114_n_p697_GurevichMessina  |y Registro en la Biblioteca Digital 
961 |a paper_09601481_v114_n_p697_GurevichMessina  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78719