Hypercyclic homogeneous polynomials on H(C)
It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first ex...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Academic Press Inc.
2018
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 06137caa a22006497a 4500 | ||
---|---|---|---|
001 | PAPER-17753 | ||
003 | AR-BaUEN | ||
005 | 20230518204908.0 | ||
008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-85035032092 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
030 | |a JAXTA | ||
100 | 1 | |a Cardeccia, R. | |
245 | 1 | 0 | |a Hypercyclic homogeneous polynomials on H(C) |
260 | |b Academic Press Inc. |c 2018 | ||
270 | 1 | 0 | |m Muro, S.; Departamento de Matemática-Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos AiresArgentina; email: smuro@dm.uba.ar |
506 | |2 openaire |e Política editorial | ||
504 | |a Aron, R.M., Conejero, J.A., Peris, A., Seoane-Sepúlveda, J.B., Powers of hypercyclic functions for some classical hypercyclic operators (2007) Integral Equations Operator Theory, 58 (4), pp. 591-596 | ||
504 | |a Aron, R.M., Markose, D., On universal functions (2004) J. Korean Math. Soc., 41 (1), pp. 65-76. , Satellite Conference on Infinite Dimensional Function Theory | ||
504 | |a Aron, R.M., Miralles, A., Chaotic polynomials in spaces of continuous and differentiable functions (2008) Glasg. Math. J., 50 (2), pp. 319-323 | ||
504 | |a Bayart, F., Grivaux, S., Hypercyclicity: the role of the unimodular point spectrum. (Hypercyclicité : Le rôle du spectre ponctuel unimodulaire.) (2004) C. R. Math. Acad. Sci. Paris, 338 (9), pp. 703-708 | ||
504 | |a Bayart, F., Grivaux, S., Frequently hypercyclic operators (2006) Trans. Amer. Math. Soc., 358 (11), pp. 5083-5117. , (electronic) | ||
504 | |a Bayart, F., Matheron, E., (2009) Dynamics of Linear Operators, Cambridge Tracts in Mathematics, 179, p. 337. , Cambridge University Press Cambridge xiv | ||
504 | |a Bernal-González, L., Backward ϕ-shifts and universality (2005) J. Math. Anal. Appl., 306 (1), pp. 180-196 | ||
504 | |a Bernardes, N.C., On orbits of polynomial maps in Banach spaces (1998) Quaest. Math., 21 (3-4), pp. 311-318 | ||
504 | |a Bernardes, N.C., Peris, A., On the existence of polynomials with chaotic behaviour (2013) J. Funct. Spaces Appl., 2013 | ||
504 | |a Bès, J., Conejero, J.A., An extension of hypercyclicity for N-linear operators (2014) Abstract and Applied Analysis, Vol. 2014, , Hindawi Publishing Corporation | ||
504 | |a Birkhoff, G.D., Démonstration d'un théorème élémentaire sur les fonctions entières (1929) C. R. Acad. Sci. Paris, 189, pp. 473-475 | ||
504 | |a Bonilla, A., Grosse-Erdmann, K.-G., On a theorem of Godefroy and Shapiro (2006) Integral Equations Operator Theory, 56 (2), pp. 151-162 | ||
504 | |a Bonilla, A., Grosse-Erdmann, K.-G., Frequently hypercyclic operators and vectors (2007) Ergodic Theory Dynam. Systems, 27 (2), pp. 383-404 | ||
504 | |a Godefroy, G., Shapiro, J.H., Operators with dense, invariant, cyclic vector manifolds (1991) J. Funct. Anal., 98 (2), pp. 229-269 | ||
504 | |a Grosse-Erdmann, K.-G., Kim, S.G., Bihypercyclic bilinear mappings (2013) J. Math. Anal. Appl., 399 (2), pp. 701-708 | ||
504 | |a Grosse-Erdmann, K.-G., Peris Manguillot, A., (2011) Linear Chaos, Universitext, 12, p. 386. , Springer Berlin EUR 53.45 | ||
504 | |a Jung, A., Mixing, simultaneous universal and disjoint universal backward ϕ-shifts (2017) J. Math. Anal. Appl., 452 (1), pp. 246-257 | ||
504 | |a Kim, S.G., Peris, A., Song, H.G., Numerically hypercyclic polynomials (2012) Arch. Math, pp. 1-10 | ||
504 | |a MacLane, G.R., Sequences of derivatives and normal families (1952) J. Anal. Math., 2, pp. 72-87 | ||
504 | |a Martínez-Giménez, F., Peris, A., Existence of hypercyclic polynomials on complex Fréchet spaces (2009) Topology Appl., 156 (18), pp. 3007-3010 | ||
504 | |a Martínez-Giménez, F., Peris, A., Chaotic polynomials on sequence and function spaces (2010) Int. J. Bifurcation Chaos, 20 (9), pp. 2861-2867 | ||
504 | |a Meise, R., Vogt, D., (1997) Introduction To Functional Analysis, , Clarendon Press | ||
504 | |a Peris, A., Chaotic polynomials on Fréchet spaces (1999) Proc. Amer. Math. Soc., 127 (12), pp. 3601-3603 | ||
504 | |a Peris, A., Erratum to: “Chaotic polynomials on Fréchet spaces” (2001) Proc. Amer. Math. Soc., 129 (12), pp. 3759-3760 | ||
504 | |a Peris, A., Chaotic polynomials on banach spaces (2003) J. Math. Anal. Appl., 287 (2), pp. 487-493 | ||
520 | 3 | |a It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic. © 2017 Elsevier Inc. |l eng | |
593 | |a Departamento de Matemática-Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; CONICET, Argentina | ||
690 | 1 | 0 | |a ENTIRE FUNCTIONS |
690 | 1 | 0 | |a FREQUENTLY HYPERCYCLIC OPERATORS |
690 | 1 | 0 | |a HOMOGENEOUS POLYNOMIALS |
690 | 1 | 0 | |a UNIVERSAL FUNCTIONS |
700 | 1 | |a Muro, S. | |
773 | 0 | |d Academic Press Inc., 2018 |g v. 226 |h pp. 60-72 |p J. Approx. Theory |x 00219045 |t Journal of Approximation Theory | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035032092&doi=10.1016%2fj.jat.2017.09.005&partnerID=40&md5=5d0646d3df45ca4c0294c6cbab129a4e |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jat.2017.09.005 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00219045_v226_n_p60_Cardeccia |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219045_v226_n_p60_Cardeccia |y Registro en la Biblioteca Digital |
961 | |a paper_00219045_v226_n_p60_Cardeccia |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 78706 |