Cell Fate Decisions During Preimplantation Mammalian Development

The early mouse embryo offers a phenomenal system to dissect how changes in the mechanisms controlling cell fate are integrated with morphogenetic events at the single-cell level. New technologies based on live imaging have enabled the discovery of dynamic changes in the regulation of single genes,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bissiere, S.
Otros Autores: Gasnier, M., Alvarez, Y.D, Plachta, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 27586caa a22018617a 4500
001 PAPER-17751
003 AR-BaUEN
005 20230518204907.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85035001463 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bissiere, S. 
245 1 0 |a Cell Fate Decisions During Preimplantation Mammalian Development 
260 |b Academic Press Inc.  |c 2018 
270 1 0 |m Plachta, N.; Institute of Molecular and Cell Biology, A*STARSingapore; email: plachtan@imcb.a-star.edu.sg 
506 |2 openaire  |e Política editorial 
504 |a Abranches, E., Guedes, A.M.V., Moravec, M., Maamar, H., Svoboda, P., Raj, A., Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency (2014) Development, 141 (14), pp. 2770-2779 
504 |a Anani, S., Bhat, S., Honma-Yamanaka, N., Krawchuk, D., Yamanaka, Y., Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo (2014) Development, 141 (14), pp. 2813-2824 
504 |a Angiolini, J., Plachta, N., Mocskos, E., Levi, V., Exploring the dynamics of cell processes through simulations of fluorescence microscopy experiments (2015) Biophysical Journal, 108 (11), pp. 2613-2618 
504 |a Ashall, L., Horton, C.A., Nelson, D.E., Paszek, P., Harper, C.V., Sillitoe, K., Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription (2009) Science, 324 (5924), pp. 242-246 
504 |a Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., Lovell-Badge, R., Multipotent cell lineages in early mouse development depend on SOX2 function (2003) Genes & Development, 17 (1), pp. 126-140 
504 |a Bahar Halpern, K., Tanami, S., Landen, S., Chapal, M., Szlak, L., Hutzler, A., Bursty gene expression in the intact mammalian liver (2015) Molecular Cell, 58 (1), pp. 147-156 
504 |a Bartman, C.R., Hsu, S.C., Hsiung, C.C., Raj, A., Blobel, G.A., Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping (2016) Molecular Cell, 62 (2), pp. 237-247 
504 |a Beaujean, N., Hartshorne, G., Cavilla, J., Taylor, J., Gardner, J., Wilmut, I., Non-conservation of mammalian preimplantation methylation dynamics (2004) Current Biology, 14 (7), pp. 266-267 
504 |a Biase, F.H., Cao, X., Zhong, S., Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing (2014) Genome Research, 24 (11), pp. 1787-1796 
504 |a Bischoff, M., Parfitt, D.E., Zernicka-Goetz, M., Formation of the embryonic-abembryonic axis of the mouse blastocyst: Relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions (2008) Development, 135 (5), pp. 953-962 
504 |a Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Core transcriptional regulatory circuitry in human embryonic stem cells (2005) Cell, 122 (6), pp. 947-956 
504 |a Brykczynska, U., Hisano, M., Erkek, S., Ramos, L., Oakeley, E.J., Roloff, T.C., Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa (2010) Nature Structural and Molecular Biology, 17 (6), pp. 679-687 
504 |a Burton, A., Muller, J., Tu, S., Padilla-Longoria, P., Guccione, E., Torres-Padilla, M.E., Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo (2013) Cell Reports, 5 (3), pp. 687-701 
504 |a Burton, A., Torres-Padilla, M.E., Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis (2014) Nature Reviews. Molecular Cell Biology, 15 (11), pp. 723-734 
504 |a Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells (2003) Cell, 113 (5), pp. 643-655 
504 |a Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., Zhuang, X., Spatially resolved, highly multiplexed RNA profiling in single cells (2015) Science, 348 (6233), pp. 413-426 
504 |a Chen, J., Zhang, Z., Li, L., Chen, B.C., Revyakin, A., Hajj, B., Single-molecule dynamics of enhanceosome assembly in embryonic stem cells (2014) Cell, 156, pp. 1274-1285 
504 |a Cho, W.-K., Jayanth, N., English, B.P., Inoue, T., Andrews, J.O., Conway, W., RNA polymerase II cluster dynamics predict mRNA output in living cells (2016) eLife, 5 
504 |a Cisse, I.I., Izeddin, I., Causse, S.Z., Boudarene, L., Senecal, A., Muresan, L., Real-time dynamics of RNA polymerase II clustering in live human cells (2013) Science, 341 (6146), pp. 664-667 
504 |a Cockburn, K., Biechele, S., Garner, J., Rossant, J., The Hippo pathway member Nf2 is required for inner cell mass specification (2013) Current Biology, 23 (13), pp. 1195-1201 
504 |a Coskun, A.F., Cai, L., Dense transcript profiling in single cells by image correlation decoding (2016) Nature Methods, 13 (8), pp. 657-660 
504 |a Dar, R.D., Razooky, B.S., Singh, A., Trimeloni, T.V., McCollum, J.M., Cox, C.D., Transcriptional burst frequency and burst size are equally modulated across the human genome (2012) Proceedings of the National Academy of Sciences of the United States of America, 109 (43), pp. 17454-17459 
504 |a Daujat, S., Weiss, T., Mohn, F., Lange, U.C., Ziegler-Birling, C., Zeissler, U., H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming (2009) Nature Structural & Molecular Biology, 16 (7), pp. 777-781 
504 |a Deng, Q., Ramskold, D., Reinius, B., Sandberg, R., Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells (2014) Science, 343 (6167), pp. 193-196 
504 |a Dietrich, J.E., Hiiragi, T., Stochastic patterning in the mouse pre-implantation embryo (2007) Development, 134, pp. 4219-4231 
504 |a Digman, M.A., Gratton, E., Lessons in fluctuation correlation spectroscopy (2011) Annual Review of Physical Chemistry, 62, pp. 645-668 
504 |a Eldar, A., Elowitz, M.B., Functional roles for noise in genetic circuits (2010) Nature, 467 (7312), pp. 167-173 
504 |a Evans, M.J., Kaufman, M.H., Establishment in culture of pluripotential cells from mouse embryos (1981) Nature, 292 (5819), pp. 154-156 
504 |a Fierro-Gonzalez, J.C., White, M.R., Silva, J., Plachta, N., Cadherin-dependent filopodia control preimplantation embryo compaction (2013) Nature Cell Biology, 15, pp. 1424-1433 
504 |a Gaglia, G., Guan, Y., Shah, J.V., Lahav, G., Activation and control of p53 tetramerization in individual living cells (2013) Proceedings of the National Academy of Sciences of the United States of America, 110 (38), pp. 15497-15501 
504 |a Gardner, R.L., Experimental analysis of second cleavage in the mouse (2002) Human Reproduction, 17 (12), pp. 3178-3189 
504 |a Gebhardt, J.C., Suter, D.M., Roy, R., Zhao, Z.W., Chapman, A.R., Basu, S., Single-molecule imaging of transcription factor binding to DNA in live mammalian cells (2013) Nature Methods, 10, pp. 421-426 
504 |a Ghamari, A., van de Corput, M.P.C., Thongjuea, S., van Cappellen, W.A., van IJcken, W., van Haren, J., In vivo live imaging of RNA polymerase II transcription factories in primary cells (2013) Genes Development, 27 (7), pp. 767-777 
504 |a Goolam, M., Scialdone, A., Graham, S.J., Macaulay, I.C., Jedrusik, A., Hupalowska, A., Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos (2016) Cell, 165 (1), pp. 61-74 
504 |a Gorman, J., Greene, E.C., Visualizing one-dimensional diffusion of proteins along DNA (2008) Nature Structural & Molecular Biology, 15, pp. 768-774 
504 |a Guo, G., Huss, M., Tong, G.Q., Wang, C., Li Sun, L., Clarke, N.D., Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst (2010) Developmental Cell, 18, pp. 675-685 
504 |a Hager, G.L., McNally, J.G., Misteli, T., Transcription dynamics (2009) Molecular Cell, 35 (6), pp. 741-753 
504 |a Halford, S.E., Marko, J.F., How do site-specific DNA-binding proteins find their targets? (2004) Nucleic Acids Research, 32, pp. 3040-3052 
504 |a Hinde, E., Pandzic, E., Yang, Z., Ng, I.H.W., Jans, D.A., Bogoyevitch, M.A., Quantifying the dynamics of the oligomeric transcription factor STAT3 by pair correlation of molecular brightness (2016) Nature Communications, 7 (1104), pp. 1-4 
504 |a Hirate, Y., Hirahara, S., Inoue, K., Kiyonari, H., Niwa, H., Sasaki, H., Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos (2015) Development, Growth & Differentiation, 57, pp. 544-556 
504 |a Hirate, Y., Hirahara, S., Inoue, K., Suzuki, A., Alarcon, V.B., Akimoto, K., Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos (2013) Current Biology, 23 (13), pp. 1181-1194 
504 |a Jacob, F., Monod, J., Genetic regulatory mechanisms in the synthesis of proteins (1961) Journal of Molecular Biology, 3, pp. 318-356 
504 |a Jedrusik, A., Parfitt, D.E., Guo, G., Skamagki, M., Grabarek, J.B., Johnson, M.H., Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo (2008) Genes & Development, 22, pp. 2692-2706 
504 |a Jungmann, R., Avendano, M.S., Woehrstein, J.B., Dai, M., Shih, W.M., Yin, P., Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT (2014) Nature Methods, 11 (3), pp. 313-318 
504 |a Kaur, G., Costa, M.W., Nefzger, C.M., Silva, J., Fierro-Gonzalez, J.C., Polo, J.M., Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy (2013) Nature Communications, 4, p. 1637 
504 |a Kurotaki, Y., Hatta, K., Nakao, K., Nabeshima, Y., Fujimori, T., Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape (2007) Science, 316, pp. 719-723 
504 |a Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A.J., Elowitz, M.B., Dynamics of the p53-Mdm2 feedback loop in individual cells (2004) Nature Genetics, 36 (2), pp. 147-150 
504 |a Larson, D.R., Fritzsch, C., Sun, L., Meng, X., Lawrence, D.S., Singer, R.H., Direct observation of frequency modulated transcription in single cells using light activation (2013) eLife, 2 
504 |a Larue, L., Ohsugi, M., Hirchenhain, J., Kemler, R., E-cadherin null mutant embryos fail to form a trophectoderm epithelium (1994) Proceedings of the National Academy of Sciences of the United States of America, 91 (17), pp. 8263-8267 
504 |a Lepikhov, K., Walter, J., Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote (2004) BMC Developmental Biology, 4, p. 12 
504 |a Leung, C.Y., Zernicka-Goetz, M., Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms (2013) Nature Communications, 4, p. 2251 
504 |a Louvet-Vallee, S., Vinot, S., Maro, B., Mitotic spindles and cleavage planes are oriented randomly in the two-cell mouse embryo (2005) Current Biology, 15, pp. 464-469 
504 |a Machan, R., Wohland, T., Recent applications of fluorescence correlation spectroscopy in live systems (2014) FEBS Letters, 588 (19), pp. 3571-3584 
504 |a Maitre, J.L., Niwayama, R., Turlier, H., Nedelec, F., Hiiragi, T., Pulsatile cell-autonomous contractility drives compaction in the mouse embryo (2015) Nature Cell Biology, 17 (7), pp. 849-855 
504 |a Marikawa, Y., Alarcon, V.B., Creation of trophectoderm, the first epithelium, in mouse preimplantation development (2012) Results and Problems in Cell Differentiation, 55, pp. 165-184 
504 |a Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells (1981) Proceedings of the National Academy of Sciences of the United States of America, 78 (12), pp. 7634-7638 
504 |a Mayer, W., Niveleau, A., Walter, J., Fundele, R., Haaf, T., Demethylation of the zygotic paternal genome (2000) Nature, 403 (6769), pp. 501-502 
504 |a McDole, K., Xiong, Y., Iglesias, P.A., Zheng, Y., Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates (2011) Developmental Biology, 355 (2), pp. 239-249 
504 |a Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells (2003) Cell, 113 (5), pp. 631-642 
504 |a Miyanari, Y., Torres-Padilla, M.E., Control of ground-state pluripotency by allelic regulation of Nanog (2012) Nature, 483 (7390), pp. 470-473 
504 |a Molina, N., Suter, D.M., Cannavo, R., Zoller, B., Gotic, I., Naef, F., Stimulus-induced modulation of transcriptional bursting in a single mammalian gene (2013) Proceedings of the National Academy of Sciences of the United States of America, 110 (51), pp. 20563-20568 
504 |a Morris, S.A., Guo, Y., Zernicka-Goetz, M., Developmental plasticity is bound by pluripotency and the Fgf and Wnt signaling pathways (2012) Cell Reports, 2 (4), pp. 756-765 
504 |a Mueller, F., Stasevich, T.J., Mazza, D., McNally, J.G., Quantifying transcription factor kinetics: At work or at play? (2013) Critical Reviews in Biochemistry and Molecular Biology, 48 (5), pp. 492-514 
504 |a Nelson, D.E., Ihekwaba, A.E., Elliott, M., Johnson, J.R., Gibney, C.A., Foreman, B.E., Oscillations in NF-kappaB signaling control the dynamics of gene expression (2004) Science, 306 (5696), pp. 704-708 
504 |a Nichols, J., Smith, A., Pluripotency in the embryo and in culture (2012) Cold Spring Harbor Perspectives in Biology, 4 (8), p. a008128 
504 |a Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 (1998) Cell, 95 (3), pp. 379-391 
504 |a Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass (2009) Developmental Cell, 16 (3), pp. 398-410 
504 |a Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R., Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation (2005) Cell, 123, pp. 917-929 
504 |a Normanno, D., Boudarène, L., Dugast-Darzacq, C., Chen, J., Richter, C., Proux, F., Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher (2015) Nature Communications, 6, p. 7357 
504 |a Oda, H., Okamoto, I., Murphy, N., Chu, J., Price, S.M., Shen, M.M., Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development (2009) Molecular Cell Biology, 29 (8), pp. 2278-2295 
504 |a Pantazis, P., Gonzalez-Gaitan, M., Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs (2007) Journal of Biomedical Optics, 12 (4), p. 044004 
504 |a Patterson, G.H., Lippincott-Schwartz, J., A photoactivatable GFP for selective photolabeling of proteins and cells (2002) Science, 297 (5588), pp. 1873-1877 
504 |a Perlmann, T., Eriksson, P., Wrange, O., Quantitative analysis of the glucocorticoid receptor-DNA interaction at the mouse mammary tumor virus glucocorticoid response element (1990) The Journal of Biological Chemistry, 265, pp. 17222-17229 
504 |a Piotrowska-Nitsche, K., Perea-Gomez, A., Haraguchi, S., Zernicka-Goetz, M., Four-cell stage mouse blastomeres have different developmental properties (2005) Development, 132 (3), pp. 479-490 
504 |a Piotrowska-Nitsche, K., Zernicka-Goetz, M., Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo (2005) Mechanisms of Development, 122 (4), pp. 487-500 
504 |a Plachta, N., Bollenbach, T., Pease, S., Fraser, S.E., Pantazis, P., Oct4 kinetics predict cell lineage patterning in the early mammalian embryo (2011) Nature Cell Biology, 13 (2), pp. 117-123 
504 |a Plusa, B., Frankenberg, S., Chalmers, A., Hadjantonakis, A.K., Moore, C.A., Papalopulu, N., Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo (2005) Journal of Cell Science, 118, pp. 505-515 
504 |a Puschendorf, M., Terranova, R., Boutsma, E., Mao, X., Isono, K., Brykczynska, U., PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos (2008) Nature Genetics, 40 (4), pp. 411-420 
504 |a Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., Tyagi, S., Stochastic mRNA synthesis in mammalian cells (2006) PLoS Biology, 4 (10) 
504 |a Raj, A., van Oudenaarden, A., Nature, nurture, or chance: Stochastic gene expression and its consequences (2008) Cell, 135 (2), pp. 216-226 
504 |a Rossant, J., Lineage development and polar asymmetries in the peri-implantation mouse blastocyst (2004) Seminars in Cell & Developmental Biology, 15 (5), pp. 573-581 
504 |a Rossant, J., Tam, P.P., Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse (2009) Development, 136 (5), pp. 701-713 
504 |a Samarage, C.R., White, M.D., Alvarez, Y.D., Fierro-Gonzalez, J.C., Henon, Y., Jesudason, E.C., Cortical tension allocates the first inner cells of the mammalian embryo (2015) Developmental Cell, 34 (4), pp. 435-447 
504 |a Santenard, A., Ziegler-Birling, C., Koch, M., Tora, L., Bannister, A.J., Torres-Padilla, M.E., Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 (2010) Nature Cell Biology, 12 (9), pp. 853-862 
504 |a Santos, F., Peters, A.H., Otte, A.P., Reik, W., Dean, W., Dynamic chromatin modifications characterise the first cell cycle in mouse embryos (2005) Developmental Biology, 280 (1), pp. 225-236 
504 |a Scholer, H.R., Dressler, G.R., Balling, R., Rohdewohld, H., Gruss, P., Oct-4: A germline-specific transcription factor mapping to the mouse t-complex (1990) EMBO Journal, 9 (7), pp. 2185-2195 
504 |a Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, F.E., Zimmer, C., Transcription factors modulate c-Fos transcriptional bursts (2014) Cell Reports, 8 (1), pp. 75-83 
504 |a Shi, J., Chen, Q., Li, X., Zheng, X., Zhang, Y., Qiao, J., Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq (2015) Development, 142 (20), pp. 3468-3477 
504 |a Singer, Z.S., Yong, J., Tischler, J., Hackett, J.A., Altinok, A., Surani, M.A., Dynamic heterogeneity and DNA methylation in embryonic stem cells (2014) Molecular Cell, 55 (2), pp. 319-331 
504 |a Singh, A., Razooky, B., Cox, C.D., Simpson, M.L., Weinberger, L.S., Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression (2010) Biophysical Journal, 98 (8), pp. L32-L34 
504 |a Smallwood, S.A., Tomizawa, S., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., Dynamic CpG island methylation landscape in oocytes and preimplantation embryos (2011) Nature Genetics, 43 (8), pp. 811-814 
504 |a Stephenson, R.O., Yamanaka, Y., Rossant, J., Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin (2010) Development, 137 (20), pp. 3383-3391 
504 |a Strnad, P., Gunther, S., Reichmann, J., Krzic, U., Balazs, B., de Medeiros, G., Inverted light-sheet microscope for imaging mouse pre-implantation development (2015) Nature Methods, 13 (2), pp. 139-142 
504 |a Strumpf, D., Mao, C.A., Yamanaka, Y., Ralston, A., Chawengsaksophak, K., Beck, F., Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst (2005) Development, 132 (9), pp. 2093-2102 
504 |a Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F., Mammalian genes are transcribed with widely different bursting kinetics (2011) Science, 332 (6028), pp. 472-474 
504 |a Tabansky, I., Lenarcic, A., Draft, R.W., Loulier, K., Keskin, D.B., Rosains, J., Developmental bias in cleavage-stage mouse blastomeres (2013) Current Biology, 23 (1), pp. 21-31 
504 |a Takahashi, K., Yamanaka, S., A decade of transcription factor-mediated reprogramming to pluripotency (2016) Nature Reviews. Molecular Cell Biology, 17 (3), pp. 183-193 
504 |a Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A., Rossant, J., Promotion of trophoblast stem cell proliferation by FGF4 (1998) Science, 282 (5396), pp. 2072-2075 
504 |a Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis (2010) Cell Stem Cell, 6 (5), pp. 468-478 
504 |a Tay, S., Hughey, J.J., Lee, T.K., Lipniacki, T., Quake, S.R., Covert, M.W., Single-cell NF-κB dynamics reveal digital activation and analogue information processing (2010) Nature, 466 (7303), pp. 267-271 
504 |a Torres-Padilla, M.E., Parfitt, D.E., Kouzarides, T., Zernicka-Goetz, M., Histone arginine methylation regulates pluripotency in the early mouse embryo (2007) Nature, 445 (7124), pp. 214-218 
504 |a Turner, D.A., Paszek, P., Woodcock, D.J., Nelson, D.E., Horton, C.A., Wang, Y., Physiological levels of TNFα stimulation induce stochastic dynamics of NF-κB responses in single living cells (2010) Journal of Cell Science, 123 (16), pp. 2834-2843 
504 |a von Hippel, P.H., Berg, O.G., Facilitated target location in biological systems (1989) The Journal of Biological Chemistry, 264, pp. 675-678 
504 |a Wang, Z., Gerstein, M., Snyder, M., RNA-Seq: A revolutionary tool for transcriptomics (2009) Nature Reviews. Genetics, 10 (1), pp. 57-63 
504 |a White, M.D., Angiolini, J.F., Alvarez, Y.D., Kaur, G., Zhao, Z.W., Mocskos, E., Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo (2016) Cell, 165 (1), pp. 75-87 
504 |a White, M.D., Bissiere, S., Alvarez, Y.D., Plachta, N., Mouse embryo compaction (2016) Current Topics in Developmental Biology, 120, pp. 235-258 
504 |a Wicklow, E., Blij, S., Frum, T., Hirate, Y., Lang, R.A., Sasaki, H., HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst (2014) PLoS Genetics, 10 
504 |a Yamanaka, Y., Ralston, A., Stephenson, R.O., Rossant, J., Cell and molecular regulation of the mouse blastocyst (2006) Developmental Dynamics, 235 (9), pp. 2301-2314 
504 |a Yeap, L.S., Hayashi, K., Surani, M.A., ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage (2009) Epigenetics & Chromatin, 2 (1), p. 12 
504 |a Yuan, P., Han, J., Guo, G., Orlov, Y.L., Huss, M., Loh, Y.H., Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells (2009) Genes and Development, 23 (21), pp. 2507-2520 
504 |a Zernicka-Goetz, M., Morris, S.A., Bruce, A.W., Making a firm decision: Multifaceted regulation of cell fate in the early mouse embryo (2009) Nature Reviews. Genetics, 10 (7), pp. 467-477 
504 |a Zhao, Z.W., Roy, R., Gebhardt, J.C.M., Suter, D.M., Chapman, A.R., Xie, X.S., Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy (2014) Proceedings of the National Academy of Sciences of the United States of America, 111 (2), pp. 681-686 
504 |a Zhao, Z.W., White, M.D., Alvarez, Y.D., Zenker, J., Bissiere, S., Plachta, N., Quantifying transcription factor-DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy (2017) Nature Protocols, 12 (7), pp. 1458-1471 
504 |a Zhao, Z.W., White, M.D., Bissiere, S., Levi, V., Plachta, N., Quantitative imaging of mammalian transcriptional dynamics: From single cells to whole embryos (2016) BMC Biology, 14 (1), p. 115 
520 3 |a The early mouse embryo offers a phenomenal system to dissect how changes in the mechanisms controlling cell fate are integrated with morphogenetic events at the single-cell level. New technologies based on live imaging have enabled the discovery of dynamic changes in the regulation of single genes, transcription factors, and epigenetic mechanisms directing early cell fate decision in the early embryo. Here, we review recent progress in linking molecular dynamic events occurring at the level of the single cell in vivo, to some of the key morphogenetic changes regulating early mouse development. © 2018 Elsevier Inc.  |l eng 
536 |a Detalles de la financiación: Agency for Science, Technology and Research 
536 |a Detalles de la financiación: Agency for Science, Technology and Research, STAR 
536 |a Detalles de la financiación: European Molecular Biology Organization 
536 |a Detalles de la financiación: Howard Hughes Medical Institute 
536 |a Detalles de la financiación: Wellcome Trust 
536 |a Detalles de la financiación: Howard Hughes Medical Institute 
536 |a Detalles de la financiación: This work was supported by grants from the Agency for Science, Technology and Research (A*STAR), European Molecular Biology Organization (EMBO), and Howard Hughes Medical Institute (HHMI)-Wellcome Trust to N.P. 
593 |a Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, Argentina 
593 |a National University of Singapore, Singapore, Singapore 
690 1 0 |a CELL FATE 
690 1 0 |a CHROMATIN 
690 1 0 |a IMAGING 
690 1 0 |a MOUSE EMBRYO 
690 1 0 |a PREIMPLANTATION 
690 1 0 |a TRANSCRIPTION 
700 1 |a Gasnier, M. 
700 1 |a Alvarez, Y.D. 
700 1 |a Plachta, N. 
773 0 |d Academic Press Inc., 2018  |g v. 128  |h pp. 37-58  |p Curr. Top. Dev. Biol.  |x 00702153  |t Current Topics in Developmental Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035001463&doi=10.1016%2fbs.ctdb.2017.11.001&partnerID=40&md5=f75baee8f1c3f3cb6cb2eeeef8cba1ab  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/bs.ctdb.2017.11.001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00702153_v128_n_p37_Bissiere  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00702153_v128_n_p37_Bissiere  |y Registro en la Biblioteca Digital 
961 |a paper_00702153_v128_n_p37_Bissiere  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78704