Solvent effects on the structure-property relationship of redox-Active self-Assembled nanoparticle-polyelectrolyte-surfactant composite thin films: Implications for the generation of bioelectrocatalytic signals in enzyme-containing assemblies

The search for strategies to improve the performance of bioelectrochemical platforms based on supramolecular materials has received increasing attention within the materials science community, where the main objective is to develop lowcost and flexible routes using self-Assembly as a key enabling pr...

Descripción completa

Detalles Bibliográficos
Autor principal: Cortez, M.L
Otros Autores: Ceolín, Marcelo Raúl, Camacho, L.C, Donath, E., Moya, S.E, Battaglini, Fernando, Azzaroni, O.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19332caa a22016577a 4500
001 PAPER-17745
003 AR-BaUEN
005 20241209083634.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85040443146 
024 7 |2 cas  |a glucose oxidase, 9001-37-0; Glucose Oxidase; Polyelectrolytes; Solvents; Surface-Active Agents 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cortez, M.L. 
245 1 0 |a Solvent effects on the structure-property relationship of redox-Active self-Assembled nanoparticle-polyelectrolyte-surfactant composite thin films: Implications for the generation of bioelectrocatalytic signals in enzyme-containing assemblies 
260 |b American Chemical Society  |c 2017 
270 1 0 |m Battaglini, F.; Departamento de Química Inorgánica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos AiresArgentina; email: battagli@qi.fcen.uba.ar 
504 |a Ghosh, S., Maiyalagan, T., Basu, R.N., Nanostructured conducting polymers for energy applications: Towards a sustainable platform (2016) Nanoscale, 8, pp. 6921-6947 
504 |a Son, E.J., Kim, J.H., Kim, K., Park, C.B., Quinone and its derivatives for energy harvesting and storage materials (2016) J. Mater. Chem. A, 4, pp. 11179-11202 
504 |a Choi, S., Microscale microbial fuel cells: Advances and challenges (2015) Biosens. Bioelectron, 69, pp. 8-25 
504 |a Ma, J., Sahai, Y., Chitosan biopolymer for fuel cell applications (2013) Carbohydr. Polym, 92, pp. 955-975 
504 |a Liang, Y., Li, Y., Wang, H., Dai, H., Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis (2013) J. Am. Chem. Soc, 135, pp. 2013-2036 
504 |a Liu, J., Liu, Z., Barrow, C.J., Yang, W., Molecularly engineered graphene surfaces for sensing applications: A review (2015) Anal. Chim. Acta, 859, pp. 1-19 
504 |a Katsounaros, I., Cherevko, S., Zeradjanin, A.R., Mayrhofer, K.J.J., Oxygen electrochemistry as a cornerstone for sustainable energy conversion (2014) Angew. Chem., Int. Ed, 53, pp. 102-121 
504 |a Coutanceau, C., Brimaud, S., Lamy, C., Léger, J.M., Dubau, L., Rousseau, S., Vigier, F., Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds (2008) Electrochim. Acta, 53, pp. 6865-6880 
504 |a Feifel, S.C., Kapp, A., Ludwig, R., Lisdat, F., Nanobiomolecular multiprotein clusters on electrodes for the formation of a switchable cascadic reaction scheme (2014) Angew. Chem., Int. Ed, 53, pp. 5676-5679 
504 |a Zayats, M., Willner, B., Willner, I., Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes (2008) Electroanalysis, 20, pp. 583-601 
504 |a Leech, D., Kavanagh, P., Schuhmann, W., Enzymatic fuel cells: Recent progress (2012) Electrochim. Acta, 84, pp. 223-234 
504 |a Suginta, W., Khunkaewla, P., Schulte, A., Electrochemical biosensor applications of polysaccharides chitin and chitosan (2013) Chem. Rev, 113, pp. 5458-5479 
504 |a Li, J., Yuan, R., Chai, Y., Che, X., Li, W., Construction of an amperometric glucose biosensor based on the immobilization of glucose oxidase onto electrodeposited pt nanoparticles-chitosan composite film (2012) Bioprocess Biosyst. Eng, 35, pp. 1089-1095 
504 |a Scognamiglio, V., Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years (2013) Biosens. Bioelectron, 47, pp. 12-25 
504 |a Ko, S., Park, T.J., Kim, H.S., Kim, J.H., Cho, Y.J., Directed self-Assembly of gold binding polypeptide-protein a fusion proteins for development of gold nanoparticle-based spr immunosensors (2009) Biosens. Bioelectron, 24, pp. 2592-2597 
504 |a Wang, H., Wu, J., Li, J., Ding, Y., Shen, G., Yu, R., Nanogold particle-enhanced oriented adsorption of antibody fragments for immunosensing platforms (2005) Biosens. Bioelectron, 20, pp. 2210-2217 
504 |a Katz, E., Willner, I., Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications (2004) Angew. Chem., Int. Ed, 43, pp. 6042-6108 
504 |a Willner, I., Willner, B., Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications (2002) Pure Appl. Chem, 74, pp. 1773-1783 
504 |a Tel-Vered, R., Kahn, J.S., Willner, I., Layered metal nanoparticle structures on electrodes for sensing, switchable controlled uptake/release, and photo-electrochemical applications (2016) Small, 12, pp. 51-75 
504 |a Yehezkeli, O., Tel-Vered, R., Raichlin, S., Willner, I., Nano- Engineered flavin-dependent glucose dehydrogenase/gold nanoparticle- modified electrodes for glucose sensing and biofuel cell applications (2011) ACS Nano, 5, pp. 2385-2391 
504 |a Chazalviel, J.N., Allongue, P., On the origin of the efficient nanoparticle mediated electron transfer across a self-Assembled monolayer (2011) J. Am. Chem. Soc, 133, pp. 762-764 
504 |a Barfidokht, A., Ciampi, S., Luais, E., Darwish, N., Gooding, J.J., Distance-Dependent electron transfer at passivated electrodes decorated by gold nanoparticles (2013) Anal. Chem, 85, pp. 1073-1080 
504 |a Udeh, C.U., Fey, N., Faul, C.F.J., Functional block-like structures from electroactive tetra (aniline) oligomers (2011) J. Mater. Chem, 21, pp. 18137-18153 
504 |a Ahmed, R., Hsiao, M.-S., Matsuura, Y., Houbenov, N., Faul, C.F.J., Manners, I., Redox-Active mesomorphic complexes from the ionic self-Assembly of cationic polyferrocenylsilane polyelectrolytes and anionic surfactants (2011) Soft Matter, 7, pp. 10462-10471 
504 |a Wei, Z., Faul, C.F.J., Aniline oligomers-Architecture, function and new opportunities for nanostructured materials (2008) Macromol. Rapid Commun, 29, pp. 280-292 
504 |a Wei, Z., Laitinen, T., Smarsly, B., Ikkala, O., Faul, C.F.J., Self- Assembly and electrical conductivity transitions in conjugated oligoaniline-surfactant complexes (2005) Angew. Chem., Int. Ed, 44, pp. 751-756 
504 |a Cheng, Z.Y., Ren, B.Y., Chang, X.Y., Liu, R., Tong, Z., Novel redox-Active ionic thermotropic liquid crystalline complexes of polyelectrolyte and ferrocenyl surfactants (2012) Chin. Chem. Lett, 23, pp. 619-622 
504 |a Cheng, Z., Ren, B., Zhao, D., Liu, X., Tong, Z., Novel thermotropic liquid crystalline and redox-Active complexes of ionically self-Assembled poly (ferrocenylsilane) and dendritic amphiphiles (2009) Macromolecules, 42, pp. 2762-2766 
504 |a Cheng, Z., Ren, B., Gao, M., Liu, X., Tong, Z., Ionic self-Assembled redox-Active polyelectrolyte-ferrocenyl surfactant complexes: Mesomorphous structure and electrochemical behavior (2007) Macromolecules, 40, pp. 7638-7643 
504 |a Faul, C.F.J., Liquid-Crystalline materials by the ionic self-Assembly route (2006) Mol. Cryst. Liq. Cryst, 450, pp. 255-265 
504 |a Faul, C.F.J., Antonietti, M., Ionic self-Assembly: Facile synthesis of supramolecular materials (2003) Adv. Mater, 15, pp. 673-683 
504 |a Faul, C.F.J., Ionic Self-Assembly for functional hierarchical nanostructured materials (2014) Acc. Chem. Res, 47, pp. 3428-3438 
504 |a Thünemann, A.F., Polyelectrolyte-Surfactant complexes. Synthesis, structure and materials aspects (2002) Prog. Polym. Sci, 27, pp. 1473-1572 
504 |a Macknight, W.J., Ponomarenko, E.A., Tirrell, D.A., Self-Assembled polyelectrolyte - surfactant complexes in nonaqueous solvents and in the solid state (1998) Acc. Chem. Res, 31, pp. 781-788 
504 |a Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., Electrochemical sensing platform based on polyelectrolyte-surfactant supramolecular assemblies incorporating carbon nanotubes (2011) Anal. Chem, 83, pp. 8011-8018 
504 |a Cortez, M.L., González, G.A., Battaglini, F., An electroactive versatile matrix for the construction of sensors (2011) Electroanalysis, 23, pp. 156-160 
504 |a Cortez, M.L., González, G.A., Ceolín, M., Azzaroni, O., Battaglini, F., Self-Assembled redox polyelectrolyte-surfactant complexes: Nanostructure and electron transfer characteristics of supramolecular films with built-in electroactive chemical functions (2014) Electrochim. Acta, 118, pp. 124-129 
504 |a Cortez, M.L., Marmisollé, W., Pallarola, D., Pietrasanta, L.I., Murgida, D.H., Ceolín, M., Azzaroni, O., Battaglini, F., Effect of gold nanoparticles on the structure and electron-Transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes (2014) Chem. - Eur. J, 20, pp. 13366-13374 
504 |a Calvo, E.J., Battaglini, F., Danilowicz, C., Wolosiuk, A., Otero, M., Layer-by-Layer electrostatic deposition of biomolecules on surfaces for molecular recognition, redox mediation and signal generation (2000) Faraday Discuss, 116, pp. 47-65 
504 |a Scodeller, P., Williams, F.J., Calvo, E.J., Xps analysis of enzyme and mediator at the surface of a layer-by-layer self-Assembled wired enzyme electrode (2014) Anal. Chem, 86, pp. 12180-12184 
504 |a Dronov, R., Kurth, D.G., Möhwald, H., Spricigo, R., Leimkühler, S., Wollenberger, U., Rajagopalan, K.V., Lisdat, F., Layer-by-Layer arrangement by protein-protein interaction of sulfite oxidase and cytochrome c catalyzing oxidation of sulfite (2008) J. Am. Chem. Soc, 130, pp. 1122-1123 
504 |a Godman, N.P., DeLuca, J.L., McCollum, S.R., Schmidtke, D.W., Glatzhofer, D.T., Electrochemical characterization of layer-by- layer assembled ferrocene-modified linear poly (ethylenimine)/enzyme bioanodes for glucose sensor and biofuel cell applications (2016) Langmuir, 32, pp. 3541-3551 
504 |a Kim, J.H., Hong, S.-G., Sun, H.J., Ha, S., Kim, J., Precipitated and chemically-crosslinked laccase over polyaniline nanofiber for high performance phenol sensing (2016) Chemosphere, 143, pp. 142-147 
504 |a Guerrieri, A., Ciriello, R., Cataldi, T.R.I., A novel amperometric biosensor based on a co-crosslinked l-lysine-Aoxidase/overoxidized polypyrrole bilayer for the highly selective determination of l-lysine (2013) Anal. Chim. Acta, 795, pp. 52-59 
504 |a Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., Formation of redox-Active self-Assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-Assembly solvent on the signal generation (2015) Bioelectrochemistry, 105, pp. 117-122 
504 |a Palermo, V., Morelli, S., Simpson, C., Mullen, K., Samori, P., Self-Organized nanofibers from a giant nanographene: Effect of solvent and deposition method (2006) J. Mater. Chem, 16, pp. 266-271 
504 |a Lena, S., Brancolini, G., Gottarelli, G., Mariani, P., Masiero, S., Venturini, A., Palermo, V., Spada, G.P., Self-Assembly of an alkylated guanosine derivative into ordered supramolecular nanoribbons in solution and on solid surfaces (2007) Chem. - Eur. J, 13, pp. 3757-3764 
504 |a De Luca, G., Pisula, W., Credgington, D., Treossi, E., Fenwick, O., Lazzerini, G.M., Dabirian, R., Samorì, P., Non-Conventional processing and post-processing methods for the nanostructuring of conjugated materials for organic electronics (2011) Adv. Funct. Mater, 21, pp. 1279-1295 
504 |a Danilowicz, C., Corton, E., Battaglini, F., Osmium complexes bearing functional groups: Building blocks for integrated chemical systems (1998) J. Electroanal. Chem, 445, pp. 89-94 
504 |a Kiely, C.J., Fink, J., Brust, M., Bethell, D., Schiffrin, D.J., Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters (1998) Nature, 396, pp. 444-446 
504 |a Sader, J.E., Sanelli, J.A., Adamson, B.D., Monty, J.P., Wei, X., Crawford, S.A., Friend, J.R., Bieske, E.J., Spring constant calibration of atomic force microscope cantilevers of arbitrary shape (2012) Rev. Sci. Instrum, 83, p. 103705 
504 |a Thünemann, A.F., Müller, M., Dautzenberg, H., Joanny, J.F., Löwen, H., Polyelectrolyte complexes (2004) Adv. Polym. Sci, 166, pp. 113-171 
504 |a Thünemann, A.F., General, S., Nanoparticles of a polyelectrolyte- fatty acid complex: Carriers for Q10 and triiodothyronine (2001) J. Controlled Release, 75, pp. 237-247 
504 |a Antonietti, M., Conrad, J., Thünemann, A., Polyelectrolyte- Surfactant complexes: A new type of solid, mesomorphous material (1994) Macromolecules, 27, pp. 6007-6011 
504 |a Bolze, J., Takahasi, M., Mizuki, J., Baumgart, T., Knoll, W., XRay Reflectivity and diffraction studies on lipid and lipopolymer langmuir-blodgett films under controlled humidity (2002) J. Am. Chem. Soc, 124, pp. 9412-9421 
504 |a Cortez, M.L., Cukierman, A.L., Battaglini, F., Surfactant presence in a multilayer polyelectrolyte-enzyme system improves its catalytic response (2009) Electrochem. Commun, 11, pp. 990-993 
504 |a Holly, F.J., Novel methods of studying polymer surfaces by employing contact angle goniometry (1983) Physicochemical Aspects of Polymer Surfaces, 1, pp. 141-154. , Mittal, K. L. Ed. Plenum Press: New York 
504 |a Chen, W., McCarthy, T.J., Layer-by-Layer deposition: A tool for polymer surface modification (1997) Macromolecules, 30, pp. 78-86 
506 |2 openaire  |e Política editorial 
520 3 |a The search for strategies to improve the performance of bioelectrochemical platforms based on supramolecular materials has received increasing attention within the materials science community, where the main objective is to develop lowcost and flexible routes using self-Assembly as a key enabling process. Important contributions to the performance of such bioelectrochemical devices have been made based on the integration and supramolecular organization of redox-Active polyelectrolyte-surfactant complexes on electrode supports. Here, we examine the influence of the processing solvent on the interplay between the supramolecular mesoorganization and the bioelectrochemical properties of redox-Active self-Assembled nanoparticle- polyelectrolyte-surfactant nanocomposite thin films. Our studies reveal that the solvent used in processing the supramolecular films and the presence of metal nanoparticles not only have a substantial influence in determining the mesoscale organization and morphological characteristics of the film but also have a strong influence on the efficiency and performance of the bioelectrochemical system. In particular, a higher bioelectrochemical response is observed when nanocomposite supramolecular films were cast from aqueous solutions. These observations seem to be associated with the fact that the use of aqueous solvents increases the hydrophilicity of the film, thus favoring the access of glucose, particularly at low concentrations. We believe that these results improve our current understanding of supramolecular nanocomposite materials generated via polyelectrolyte-surfactant complexes, in order to use the processing conditions as a variable to improve the performance of bioelectrochemical devices. © 2016 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: XRD2-14358, XRD2-13391, XRD2-11639, SXS-11642 
536 |a Detalles de la financiación: Austrian Institute of Technology 
536 |a Detalles de la financiación: Ashikaga Institute of Technology 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 0370 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2010-2554, PICT-2013-0905 
536 |a Detalles de la financiación: The authors acknowledge financial support from ANPCyT (Grants PICT 2010-2554 and PICT-2013-0905), Fundacioń Petruzza, Consejo Nacional de Investigaciones Cientifí cas y Tećnicas (CONICET; Grant PIP 0370), and the Austrian Institute of Technology GmbH (AIT−CONICET Partner Lab: “Exploratory Research for Advanced Technologies in Supramolecular Materials Science”, Exp. 4947/11, Res. No. 3911, 28-12-2011). O.A. and M.C. gratefully acknowledge the LNLS (Campinas, Brazil) for financial support and for granting access to synchrotron facilities (XRD2-13391, XRD2-11639, XRD2-14358, and SXS-11642). M.L.C., M.C., F.B., and O.A. are CONICET fellows. 
593 |a Departamento de Química Inorgánica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Buenos Aires, C1428EHA, Argentina 
593 |a Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas Y Aplicadas (INIFTA), Universidad Nacional de la Plata, La Plata, Argentina 
593 |a Faculty of Medicine, Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany 
593 |a CIC biomaGUNE, Paseo Miramón 182, San Sebastián, Gipuzkoa, 20009, Spain 
690 1 0 |a BIOELECTROCHEMISTRY 
690 1 0 |a METAL NANOPARTICLES 
690 1 0 |a NANOCOMPOSITE THIN FILMS 
690 1 0 |a POLYELECTROLYTE-SURFACTANT COMPLEXES 
690 1 0 |a REDOX-ACTIVE POLYMERS 
690 1 0 |a SELF-ASSEMBLY 
690 1 0 |a STRUCTURE-PROPERTY RELATIONSHIP 
690 1 0 |a SUPRAMOLECULAR MATERIALS 
690 1 0 |a BIOCHEMISTRY 
690 1 0 |a COMPOSITE FILMS 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a FILMS 
690 1 0 |a HYDROPHILICITY 
690 1 0 |a METAL NANOPARTICLES 
690 1 0 |a NANOCOMPOSITES 
690 1 0 |a NANOPARTICLES 
690 1 0 |a POLYELECTROLYTES 
690 1 0 |a REDOX REACTIONS 
690 1 0 |a SELF ASSEMBLY 
690 1 0 |a SOLUTIONS 
690 1 0 |a SOLVENTS 
690 1 0 |a SUPRAMOLECULAR CHEMISTRY 
690 1 0 |a SURFACE ACTIVE AGENTS 
690 1 0 |a THIN FILMS 
690 1 0 |a BIOELECTROCHEMISTRY 
690 1 0 |a NANOCOMPOSITE THIN FILMS 
690 1 0 |a POLYELECTROLYTE-SURFACTANT COMPLEXES 
690 1 0 |a REDOX-ACTIVE 
690 1 0 |a STRUCTURE PROPERTY RELATIONSHIPS 
690 1 0 |a SUPRAMOLECULAR MATERIALS 
690 1 0 |a NANOCOMPOSITE FILMS 
690 1 0 |a GLUCOSE OXIDASE 
690 1 0 |a POLYELECTROLYTE 
690 1 0 |a SOLVENT 
690 1 0 |a SURFACTANT 
690 1 0 |a CHEMISTRY 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a GLUCOSE OXIDASE 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a POLYELECTROLYTES 
690 1 0 |a SOLVENTS 
690 1 0 |a SURFACE-ACTIVE AGENTS 
700 1 |a Ceolín, Marcelo Raúl 
700 1 |a Camacho, L.C. 
700 1 |a Donath, E. 
700 1 |a Moya, S.E. 
700 1 |a Battaglini, Fernando 
700 1 |a Azzaroni, O. 
773 0 |d American Chemical Society, 2017  |g v. 9  |h pp. 1119-1128  |k n. 1  |p ACS Appl. Mater. Interfaces  |x 19448244  |t ACS Applied Materials and Interfaces 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040443146&doi=10.1021%2facsami.6b13456&partnerID=40&md5=e56c65d12c879a4451ccb7343087be1c  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acsami.6b13456  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19448244_v9_n1_p1119_Cortez  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19448244_v9_n1_p1119_Cortez  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_19448244_v9_n1_p1119_Cortez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion