Generating degrees for graded projective resolutions

We provide a framework connecting several well-known theories related to the linearity of graded modules over graded algebras. In the first part, we pay a particular attention to the tensor products of graded bimodules over graded algebras. Finally, we provide a tool to evaluate the possible degrees...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marcos, E.N
Otros Autores: Solotar, A., Volkov, Y.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05537caa a22005777a 4500
001 PAPER-17744
003 AR-BaUEN
005 20230518204907.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85032373832 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Marcos, E.N. 
245 1 0 |a Generating degrees for graded projective resolutions 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2018 
270 1 0 |m Solotar, A.; IMAS, Dto de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, Argentina; email: asolotar@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Anick, D., On the homology of associative algebras (1986) Trans. Amer. Math. Soc., 296, pp. 641-659 
504 |a Backelin, J., Froberg, R., Koszul Algebras, Veronese subrings, and rings with linear resolution (1980) Rev. Roumaine Math. Pures Appl., 30, pp. 85-97 
504 |a Berger, R., Koszulity for nonquadratic algebras (2001) J. Algebra, 239, pp. 705-734 
504 |a Cartan, H., Eilenberg, S., (1999) Homological Algebra, Princeton Landmarks in Mathematics, pp. xvi and 390. , Princeton University Press, Princeton, NJ 
504 |a Chouhy, S., Solotar, A., Projective resolutions of associative algebras and ambiguities (2015) J. Algebra, 432, pp. 22-61 
504 |a Green, E., Farkas, D., Feustel, C., Synergy of Gröbner basis and Path Algebras (1993) Canad. J. Math, 45, pp. 727-739 
504 |a Green, E., Marcos, N.E., Koszul algebras (2005) Comm. Algebra, 33 (6), pp. 1753-1764 
504 |a Green, E., Marcos, N.E., D-Koszul, 2-d determined algebras and 2-d-Koszul algebras (2011) J. Pure Appl. Algebra, 215 (4), pp. 439-449 
504 |a Green, E., Marcos, N.E., Martinez-Villa, R., Zhang, P., D-Koszul algebras (2004) J. Pure Appl. Algebra, 193, pp. 141-162 
504 |a Green, E., Martnez-Villa, R., Koszul and yoneda algebras, representation theory of algebras (Cocoyoc, 1994), 227-244 (1996) CMS Conf. Proc., 18, Amer. Math. Soc. Providence, RI 
504 |a Green, E., Solberg, Ø., An Algorithmic Approach to Resolutions (2007) J. Symbolic Comput., 42, pp. 1012-1033 
504 |a Polishchuk, A., Positselski, L., (2005) Quadratic Algebras, , University Lecture Series, 37 (American Mathematical Society, Providence, RI 
504 |a Priddy, S., Koszul resolutions (1970) Trans. Amer. Math. Soc., 152, pp. 39-60 
504 |a Skölberg, E., Going from cohomology to Hochschild cohomology (2005) J. Algebra, 288, pp. 263-278 
520 3 |a We provide a framework connecting several well-known theories related to the linearity of graded modules over graded algebras. In the first part, we pay a particular attention to the tensor products of graded bimodules over graded algebras. Finally, we provide a tool to evaluate the possible degrees of a module appearing in a graded projective resolution once the generating degrees for the first term of some particular projective resolution are known. © 2018 World Scientific Publishing Company.  |l eng 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de São Paulo, PIP-CONICET 11220150100483CO, UBACyT 20020130100533BA, 2014/19521-3, 2014/09310-5 
536 |a Detalles de la financiación: Council on grants of the President of the Russian Federation, MK-1378.2017.1 
536 |a Detalles de la financiación: The first author has been supported by the thematic project of Fapesp 2014/09310-5. The second author has been partially supported by projects PIP-CONICET 11220150100483CO and UBACyT 20020130100533BA. The first and second authors have been partially supported by project MathAmSud-REPHOMOL. The third author has been supported by a post-doc scholarship of Fapesp (Project number: 2014/19521-3) and by Russian Federation President grant (Project number: MK-1378.2017.1). The second author is a research member of CONICET (Argentina). 
593 |a IME-USP (Departamento de Matemática), Cid. Univ., Rua Matão 1010, São Paulo, 055080-090, Brazil 
593 |a IMAS, Dto de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina 
593 |a Saint-Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, Russian Federation 
593 |a Dto de Matemática, Instituto de Matemática e Estatística, Universidade São Paulo, Cidade Universitária, Rua de Matão 1010, São Paulo-SP, 055080-090, Brazil 
690 1 0 |a GRÖBNER BASES 
690 1 0 |a KOSZUL 
690 1 0 |a LINEAR MODULES 
700 1 |a Solotar, A. 
700 1 |a Volkov, Y. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2018  |g v. 17  |k n. 10  |p J. Algebra Appl.  |x 02194988  |w (AR-BaUEN)CENRE-5398  |t Journal of Algebra and its Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032373832&doi=10.1142%2fS0219498818501918&partnerID=40&md5=31e0991fee70b1235bbe2131ea8383aa  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S0219498818501918  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02194988_v17_n10_p_Marcos  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02194988_v17_n10_p_Marcos  |y Registro en la Biblioteca Digital 
961 |a paper_02194988_v17_n10_p_Marcos  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78697