Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps

The effect of dye concentration on the fluorescence, ΦF, and singlet molecular oxygen, ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nmthick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical proper...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ezquerra Riega, S.D
Otros Autores: Rodríguez, H.B, Román, E.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: IOP Publishing Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11178caa a22008297a 4500
001 PAPER-17695
003 AR-BaUEN
005 20230518204903.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85040462803 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Ezquerra Riega, S.D. 
245 1 0 |a Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps 
260 |b IOP Publishing Ltd  |c 2017 
270 1 0 |m Román, E.S.; CONICET-Universidad de Buenos Aires, Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pab. IIArgentina; email: esr@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Kochevar, I.E., Redmond, R.W., Photosensitized production of singlet oxygen (2000) Methods Enzimol, 319, pp. 20-28 
504 |a Fleming, G.R., Knight, A.W.E., Morris, J.M., Morrison, R.J.S., Robinson, G.W., Picosecond fluorescence studies of xanthene dyes (1977) J. Am. Chem. Soc, 99, pp. 4306-4311 
504 |a Tomasini, E.P., Braslavsky, S.E., San Román, E., Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS) (2012) Photochem. Photobiol. Sci, 11, pp. 1010-1017 
504 |a Neckers, D.C., Heterogeneous sensitizers based on merrifield copolymer beads (1985) Reactive Polym, 3, pp. 277-298 
504 |a Lopez, S.G., Crovetto, L., Alvarez-Pez, J.M., Talavera, E.M., San Román, E., Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose (2014) Photochem. Photobiol. Sci, 13, pp. 1311-1320 
504 |a Reisch, A., Klymchenko, A.S., Fluorescent polymer nanoparticles based on dyes: Seeking brighter tools for bioimaging (2016) Small, 12, pp. 1968-1992 
504 |a Rodríguez, H.B., Lagorio, M.G., San Roman, E., Rose bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimmers (2004) Photochem. Photobiol. Sci, 3, pp. 674-680 
504 |a Litman, Y., Rodríguez, H.B., San Román, E., Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2- hydroxyethyl methacrylate) (2016) Photochem. Photobiol. Sci, 15, pp. 80-85 
504 |a Seybold, P.G., Gouterman, M., Callis, J., Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes (1969) Photochem. Photobiol, 9, pp. 229-242 
504 |a Figueiredo, T.L.C., Johnstone, R.A.W., Ana Sørensen Amp, S., Burget, D., Jacques, P., Determination of fluorescence yields, singlet lifetimes and singlet oxygen yields of waterinsoluble porphyrins and metalloporphyrins in organic solvents and in aqueous media (1999) Photochem. Photobiol, 69, pp. 517-528 
504 |a Mirenda, M., Strassert, C.A., Dicelio, L.E., San Roman, E., Dye-polyelectrolyte layer-by-layer self-assembled materials: Molecular aggregation, structural stability, and singlet oxygen photogeneration (2010) ACS Appl. Mater. Interfaces, 2, pp. 1556-1560 
504 |a Nowakowska, M., Solvent effect on the quantum yield of the self-sensitized photoperoxidation of 1, 3- diphenilisobenzofuran (1984) J. Chem. Soc. Faraday Trans, 1, pp. 2119-2126 
504 |a Usui, Y., Determination of quantum yield of singlet oxygen formation by photosensitization (1973) Chem. Lett, 2, pp. 743-744 
504 |a Usui, Y., Tsukada, M., Nakamura, H., Kinetic studies of photosensitized oxygenation by singlet oxygen in aqueous micellar solutions (1978) Bull. Chem. Soc. Japan, 51, pp. 379-384 
504 |a Parker, J.W., Cox, M.E., Mass transfer of oxygen in poly (2-hydroxyethyl methacrylate) (1988) J. Polym. Sci. A, 26, pp. 1179-1188 
504 |a Loring, R.F., Andersen, H.C., Fayer, M.D., Electronic excited state transport and trapping in solution (1982) J. Chem. Phys, 76, pp. 2015-2027 
504 |a Kulak, L., Bojarski, C., Forward and reverse electronic energy transport and trapping in solution: II. Numerical results and Monte Carlo simulations (1995) Chem. Phys, 191, pp. 67-86 
504 |a Lopez, S.G., Worringer, G., Rodríguez, H.B., San Román, E., Trapping of Rhodamine 6G excitation energy on cellulose microparticles (2010) Phys. Chem. Chem. Phys, 12, pp. 2246-2253 
504 |a De Girolamo Del Mauro, A., Grimaldi, A.I., La Ferrara, V., Massera, E., Miglietta, M.L., Polichetti, T., Di Francia, G., A simple optical model for the swelling evaluation in polymer nanocomposites (2009) J. Sens, 2009, p. 703206 
504 |a Krimer, N.I., Rodrigues, D., Rodríguez, H.B., Mirenda, M., Steady-state fluorescence of highly absorbing samples in transmission geometry: A simplified quantitative approach considering reabsorption events (2017) Anal. Chem, 89, pp. 640-647 
504 |a Kramer, L.E., Spears, K.G., Hydrogen bond strengths from solvent-dependent lifetimes of rose bengal dye (1978) J. Am. Chem. Soc, 100, pp. 221-227 
504 |a Litman, Y., Voss, M.G., Rodríguez, H.B., San Roman, E., Effect of concentration on the formation of rose bengal triplet state on microcrystalline cellulose: A combined laser-induced optoacoustic spectroscopy, diffuse reflectance flash photolysis, and luminescence study (2014) J. Phys. Chem.A, 118, pp. 10531-10537 
504 |a Rabek, J.F., (1996) Photodegradation of Polymers: Physical Characteristics and Applications, p. 87. , Berlin: Springer 
504 |a Gottschalk, P., Paczkowski, J., Neckers, D.C., Factors influencing the quantum yields for rose bengal formation of singlet oxygen (1986) J. Photochem, 35, pp. 277-281 
504 |a Wilkinson, F., Helman, W.P., Ross, A.B., Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution (1993) J. Phys. Chem. Ref. Data, 22, pp. 113-262 
504 |a Talhavini, M., Atvars, T.D.Z., Photostability of xanthene molecules trapped in poly(vinyl alcohol) (PVA) matrices (1999) J. Photochem. Photobiol. A, 120, pp. 141-149 
504 |a Kasche, V., Liindqvist, L., Reactions between the triplet state of fluorescein and oxygen (1964) J. Phys. Chem, 68, pp. 817-823 
504 |a Song, L., Varma, C.A.G., Verhoeven, A.J.W., Tanke, H.J., Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy (1996) Biophys. Chem, 70, pp. 2959-2968 
504 |a Roncel, M., Navarro, J.A., De La Rosa, M.A., Hydrogen peroxide photoproduction sensitized with rose bengal with semicarbazide as the electron source (1996) J. Photochem. Photobiol. A, 45, pp. 341-353 
504 |a Kamat, P.V., Fox, M.A., Photophysics and photochemistry of xanthene dyes in polymer solutions and films (1984) J. Phys. Chem, 88, pp. 2297-2302 
504 |a Lee, P.C.C., Rodgers, M.A.J., Laser flash photokinetic studies of rose bengal sensitized photodynamic interactions of nucleotides and DNA (1987) Photochem. Photobiol, 45, pp. 79-86 
520 3 |a The effect of dye concentration on the fluorescence, ΦF, and singlet molecular oxygen, ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nmthick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF=0.05±0.01 andΦΔ=0.76±0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05Mand concentration self-quenching after 0.01Mare interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius rQ=1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF, trap/ΦF, monomer≈0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided. ©2017 IOP Publishing Ltd.  |l eng 
536 |a Detalles de la financiación: PIP 112-201101-00467 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020130100166BA 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, 2014-2153, PICT 2012-2357 
536 |a Detalles de la financiación: This work has been supported by the Universidad de Buenos Aires (UBACyT 20020130100166BA), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 112-201101-00467) and the Agencia Nacional de Promoción Científica y Tecnoló-gica (ANPCyT PICT 2012-2357 and 2014-2153). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. HBR and ESR are staff members of CONICET. The authors have declared that no conflicting interests exist. 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pab. II, Buenos Aires, Argentina 
593 |a INIFTA (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Diag. 113 y Calle 64, La Plata, Argentina 
690 1 0 |a ENERGY TRAPPING 
690 1 0 |a FLUORESCENCE 
690 1 0 |a PHEMA 
690 1 0 |a POLYMER FILMS 
690 1 0 |a ROSE BENGAL 
690 1 0 |a SINGLET MOLECULAR OXYGEN 
700 1 |a Rodríguez, H.B. 
700 1 |a Román, E.S. 
773 0 |d IOP Publishing Ltd, 2017  |g v. 5  |k n. 1  |p Methods Appl. Fluoresc.  |x 20506120  |t Methods and Applications in Fluorescence 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040462803&doi=10.1088%2f2050-6120%2faa61ae&partnerID=40&md5=3eb9175520c340c7bbd67756589fc7ea  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/2050-6120/aa61ae  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20506120_v5_n1_p_EzquerraRiega  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20506120_v5_n1_p_EzquerraRiega  |y Registro en la Biblioteca Digital 
961 |a paper_20506120_v5_n1_p_EzquerraRiega  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78648