Quantifying transcription factor-DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy

Probing transcription factor (TF)-DNA interactions remains challenging in complex in vivo systems such as mammalian embryos, especially when TF copy numbers and fluorescence background are high. To address this difficulty, fluorescence correlation spectroscopy (FCS) can be combined with the use of p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zhao, Z.W
Otros Autores: White, M.D, Alvarez, Y.D, Zenker, J., Bissiere, S., Plachta, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nature Publishing Group 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15099caa a22015977a 4500
001 PAPER-17666
003 AR-BaUEN
005 20230518204901.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85026329378 
024 7 |2 cas  |a DNA, 9007-49-2; DNA; Transcription Factors 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Zhao, Z.W. 
245 1 0 |a Quantifying transcription factor-DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy 
260 |b Nature Publishing Group  |c 2017 
270 1 0 |m Plachta, N.; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR)Singapore; email: plachtan@imcb.a-star.edu.sg 
506 |2 openaire  |e Política editorial 
504 |a McNally, J.G., Müller, W.G., Walker, D., Wolford, R., Hager, G.L., The glucocorticoid receptor: Rapid exchange with regulatory sites in living cells (2000) Science, 287, pp. 1262-1265 
504 |a Gebhardt, J.C.M., Single-molecule imaging of transcription factor binding to DNA in live mammalian cells (2013) Nat. Methods, 10, pp. 421-426 
504 |a Mueller, F., Wach, P., McNally, J.G., Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching (2008) Biophys. J, 94, pp. 3323-3339 
504 |a Morisaki, T., Müller, W.G., Golob, N., Mazza, D., McNally, J.G., Single-molecule analysis of transcription factor binding at transcription sites in live cells (2014) Nat. Commun, 5, p. 4456 
504 |a Chen, J., Single-molecule dynamics of enhanceosome assembly in embryonic stem cells (2014) Cell, 156, pp. 1274-1285 
504 |a Mazza, D., Abernathy, A., Golob, N., Morisaki, T., McNally, J.G., A benchmark for chromatin binding measurements in live cells (2012) Nucleic Acids Res, 40 
504 |a Sugo, N., Single-molecule imaging reveals dynamics of CREB transcription factor bound to its target sequence (2015) Sci. Rep, 5, p. 10662 
504 |a Speil, J., Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus (2011) Biophys. J, 101, pp. 2592-2600 
504 |a Liu, Z., 3D imaging of Sox2 enhancer clusters in embryonic stem cells (2014) Elife, 3 
504 |a Izeddin, I., Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus (2014) Elife, 3 
504 |a Zhao, Z.W., White, M.D., Bissiere, S., Levi, V., Plachta, N., Quantitative imaging of mammalian transcriptional dynamics: From single cells to whole embryos (2016) BMC Biol, 14, p. 115 
504 |a Hager, G.L., McNally, J.G., Misteli, T., Transcription dynamics (2009) Mol. Cell, 35, pp. 741-753 
504 |a Voss, T.C., Hager, G.L., Dynamic regulation of transcriptional states by chromatin and transcription factors (2014) Nat. Rev. Genet, 15, pp. 69-81 
504 |a Coleman, R.A., Imaging transcription: Past, present, and future (2015) Cold Spring Harb. Symp. Quant. Biol, 80, pp. 1-8 
504 |a Darzacq, X., Imaging transcription in living cells (2009) Annu. Rev. Biophys, 38, pp. 173-196 
504 |a Magde, D., Elson, E., Webb, W.W., Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy (1972) Phys. Rev. Lett, 29, pp. 705-708 
504 |a Elson, E.L., Fluorescence correlation spectroscopy: Past, present, future (2011) Biophys. J, 101, pp. 2855-2870 
504 |a Machánˇ, R., Wohland, T., Recent applications of fluorescence correlation spectroscopy in live systems (2014) FEBS Lett, 588, pp. 3571-3584 
504 |a Digman, M.A., Gratton, E., Lessons in fluctuation correlation spectroscopy (2011) Annu. Rev. Phys. Chem, 62, pp. 645-668 
504 |a Weidemann, T., Mücksch, J., Schwille, P., Fluorescence fluctuation microscopy: A diversified arsenal of methods to investigate molecular dynamics inside cells (2014) Curr. Opin. Struct. Biol, 28, pp. 69-76 
504 |a Bacia, K., Schwille, P., Practical guidelines for dual-color fluorescence cross-correlation spectroscopy (2007) Nat. Protoc, 2, pp. 2842-2856 
504 |a Krieger, J.W., Imaging fluorescence (Cross-) correlation spectroscopy in live cells and organisms (2015) Nat. Protoc, 10, pp. 1948-1974 
504 |a Rossow, M.J., Sasaki, J.M., Digman, M.A., Gratton, E., Raster image correlation spectroscopy in live cells (2010) Nat. Protoc, 5, pp. 1761-1774 
504 |a Weidemann, T., Application of fluorescence correlation spectroscopy (FCS) to measure the dynamics of fluorescent proteins in living cells (2014) Fluorescence Spectroscopy and Microscopy: Methods and Protocols, pp. 539-555. , (eds. Engelborghs, Yves & Visser, Antonie J.W.G., Humana Press 
504 |a Biggin, M.D., Animal transcription networks as highly connected, quantitative continua (2011) Dev. Cell, 21, pp. 611-626 
504 |a Patterson, G.H., Lippincott-Schwartz, J., A photoactivatable GFP for selective photolabeling of proteins and cells (2002) Science, 297, pp. 1873-1877 
504 |a Kaur, G., Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy (2013) Nat. Commun, 4, p. 1637 
504 |a White, M.D., Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo (2016) Cell, 165, pp. 75-87 
504 |a Zhao, Z.W., Gebhardt, J.C.M., Suter, D.M., Xie, X.S., Reply to ‘Convergence of chromatin binding estimates in live cells’ (2013) Nat. Methods, 10, 692p 
504 |a Wang, Y., Wang, X., Wohland, T., Sampath, K., Extracellular interactions and ligand degradation shape the nodal morphogen gradient (2016) Elife, 5 
504 |a Yu, S.R., Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules (2009) Nature, 461, pp. 533-536 
504 |a Shi, X., Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy (2009) Biophys. J, 97, pp. 678-686 
504 |a Capoulade, J., Wachsmuth, M., Hufnagel, L., Knop, M., Quantitative fluorescence imaging of protein diffusion and interaction in living cells (2011) Nat. Biotech, 29, pp. 835-839 
504 |a Wohland, T., Shi, X., Sankaran, J., Stelzer, E.H.K., Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments (2010) Opt. Express, 18, pp. 10627-10641 
504 |a Digman, M.A., Measuring fast dynamics in solutions and cells with a laser scanning microscope (2005) Biophys. J, 89, pp. 1317-1327 
504 |a Digman, M.A., Gratton, E., Imaging barriers to diffusion by pair correlation functions (2009) Biophys. J, 97, pp. 665-673 
504 |a Ries, J., Chiantia, S., Schwille, P., Accurate determination of membrane dynamics with line-scan FCS (2009) Biophys. J, 96, pp. 1999-2008 
504 |a Pantazis, P., González-Gaitán, M., Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs (2007) J. Biomed. Opt, 12 
504 |a Plachta, N., Bollenbach, T., Pease, S., Fraser, S.E., Pantazis, P., Oct4 kinetics predict cell lineage patterning in the early mammalian embryo (2011) Nat. Cell Biol, 13, pp. 117-123 
504 |a Wang, S., Moffitt, J.R., Dempsey, G.T., Xie, X.S., Zhuang, X., Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 8452-8457 
504 |a Mohr, M.A., Argast, P., Pantazis, P., Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins (2016) Nat. Protoc, 11, pp. 2419-2431 
504 |a Rigler, R., Mets, Ü., Widengren, J., Kask, P., Fluorescence correlation spectroscopy with high count rate and low background: Analysis of translational diffusion (1993) Eur. Biophys. J, 22, pp. 169-175 
504 |a Widengren, J., Mets, Ü., Rigler, R., Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy (1999) Chem. Phys, 250, pp. 171-186 
504 |a Halford, S.E., Marko, J.F., How do site-specific DNA-binding proteins find their targets? (2004) Nucleic Acids Res, 32, pp. 3040-3052 
504 |a Michelman-Ribeiro, A., Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy (2009) Biophys. J, 97, pp. 337-346 
504 |a Elson, E.L., Brief introduction to fluorescence correlation spectroscopy (2013) Methods in Enzymology, 518, pp. 11-41. , (ed. Tetin, S.Y., Academic Press 
504 |a Sobell, H.M., Actinomycin and DNA transcription (1985) Proc. Natl. Acad. Sci. USA, 82, pp. 5328-5331 
504 |a Yoshida, M., Horinouchi, S., Beppu, T., Trichostatin A and trapoxin: Novel chemical probes for the role of histone acetylation in chromatin structure and function (1995) Bio Essays, 17, pp. 423-430 
504 |a Behringer, R., Gertsenstein, M., Nagy, K.V., Nagy, A., (2014) Manipulating the Mouse Embryo: A Laboratory Manual, , Cold Spring Harbor Laboratory Press 
504 |a Müller, P., Schwille, P., Weidemann, T., PyCorrFit—generic data evaluation for fluorescence correlation spectroscopy (2014) Bioinformatics, 30, pp. 2532-2533 
504 |a Ries, J., Automated suppression of sample-related artifacts in fluorescence correlation spectroscopy (2010) Opt. Express, 18, pp. 11073-11082 
504 |a Beechem, J.M., Global analysis of biochemical and biophysical data (1992) Methods Enzymol, 210, pp. 37-54. , Academic Press 
504 |a Wachsmuth, M., Waldeck, W., Langowski, J., Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy (2000) J. Mol. Biol, 298, pp. 677-689 
504 |a He, J., Guo, S.-M., Bathe, M., Bayesian approach to the analysis of fluorescence correlation spectroscopy data I: Theory (2012) Anal. Chem, 84, pp. 3871-3879 
504 |a Sun, G., Bayesian model selection applied to the analysis of fluorescence correlation spectroscopy data of fluorescent proteins in vitro and in vivo (2015) Anal. Chem, 87, pp. 4326-4333 
504 |a Schwille, P., Bieschke, J., Oehlenschläger, F., Kinetic investigations by fluorescence correlation spectroscopy: The analytical and diagnostic potential of diffusion studies (1997) Biophys. Chem, 66, pp. 211-228 
520 3 |a Probing transcription factor (TF)-DNA interactions remains challenging in complex in vivo systems such as mammalian embryos, especially when TF copy numbers and fluorescence background are high. To address this difficulty, fluorescence correlation spectroscopy (FCS) can be combined with the use of photoactivatable fluorescent proteins to achieve selective photoactivation of a subset of tagged TF molecules. This approach, termed paFCS, enables FCS measurements within single cell nuclei inside live embryos, and obtains autocorrelation data of a quality previously only attainable in simpler in vitro cell culture systems. Here, we present a protocol demonstrating the applicability of paFCS in developing mouse embryos by outlining its implementation on a commercial laser-scanning microscope. We also provide procedures for optimizing the photoactivation and acquisition parameters and determining key parameters describing TF-DNA binding. The entire procedure can be performed within ~2 d (excluding embryo culture time), although the acquisition of each paFCS data set takes only ~10 min. This protocol can be used to noninvasively reveal cell-to-cell variation in TF dynamics, as well as critical, fate-predicting changes over the course of early embryonic development. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Agency for Science, Technology and Research 
536 |a Detalles de la financiación: EMBO 
536 |a Detalles de la financiación: acknoWleDGMents We thank J. Silva for help with embryo isolation and microinjection, and V. Levi for advice on modeling. This work was supported by an A*STAR National Science Scholarship (to Z.W.Z.), a Human Frontiers Science Program Fellowship (to J.Z.), and an A*STAR Investigatorship and EMBO Young Investigator grants (to N.P.). 
593 |a Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
690 1 0 |a DNA 
690 1 0 |a FLUORESCENT DYE 
690 1 0 |a TRANSCRIPTION FACTOR 
690 1 0 |a DNA 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a TRANSCRIPTION FACTOR 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CLINICAL PROTOCOL 
690 1 0 |a DNA BINDING 
690 1 0 |a EMBRYO 
690 1 0 |a EMBRYO CULTURE 
690 1 0 |a EMBRYO DEVELOPMENT 
690 1 0 |a FEMALE 
690 1 0 |a FLUORESCENCE CORRELATION SPECTROSCOPY 
690 1 0 |a IN VIVO STUDY 
690 1 0 |a INFORMATION PROCESSING 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PHOTOACTIVATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROCESS OPTIMIZATION 
690 1 0 |a PROTEIN DNA BINDING 
690 1 0 |a PROTEIN PROTEIN INTERACTION 
690 1 0 |a QUANTITATIVE ANALYSIS 
690 1 0 |a SINGLE CELL ANALYSIS 
690 1 0 |a ANIMAL 
690 1 0 |a MAMMALIAN EMBRYO 
690 1 0 |a METABOLISM 
690 1 0 |a PROCEDURES 
690 1 0 |a SINGLE CELL ANALYSIS 
690 1 0 |a SPECTROFLUOROMETRY 
690 1 0 |a TIME FACTOR 
690 1 0 |a ANIMALS 
690 1 0 |a DNA 
690 1 0 |a EMBRYO, MAMMALIAN 
690 1 0 |a MICE 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a SINGLE-CELL ANALYSIS 
690 1 0 |a SPECTROMETRY, FLUORESCENCE 
690 1 0 |a TIME FACTORS 
690 1 0 |a TRANSCRIPTION FACTORS 
700 1 |a White, M.D. 
700 1 |a Alvarez, Y.D. 
700 1 |a Zenker, J. 
700 1 |a Bissiere, S. 
700 1 |a Plachta, N. 
773 0 |d Nature Publishing Group, 2017  |g v. 12  |h pp. 1458-1471  |k n. 7  |p Nat. Protoc.  |x 17542189  |t Nature Protocols 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026329378&doi=10.1038%2fnprot.2017.051&partnerID=40&md5=7ead06c07e5c43da07f0e6476851bcd4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1038/nprot.2017.051  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17542189_v12_n7_p1458_Zhao  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17542189_v12_n7_p1458_Zhao  |y Registro en la Biblioteca Digital 
961 |a paper_17542189_v12_n7_p1458_Zhao  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78619