Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation

In this work, quantum mechanical calculations and Monte Carlo statistical mechanical simulations were carried out to investigate the solvation properties of HNO in aqueous solution and to evaluate the proton-coupled one electron reduction potential of 2NO to 1HNO, which is essential missing informat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Venâncio, M.F
Otros Autores: Doctorovich, F., Rocha, W.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2017
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16312caa a22013217a 4500
001 PAPER-17658
003 AR-BaUEN
005 20230518204900.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85024921167 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCBF 
100 1 |a Venâncio, M.F. 
245 1 0 |a Solvation and Proton-Coupled Electron Transfer Reduction Potential of 2NO• to 1HNO in Aqueous Solution: A Theoretical Investigation 
260 |b American Chemical Society  |c 2017 
270 1 0 |m Doctorovich, F.; Departamento de Química Inorganica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad UniversitariaArgentina; email: doctorovich@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ignarro, L.J., Buga, G.M., Wood, K.S., Byrnes, R.E., Chaudhuri, G., Endothelium-derived Relaxing Factor Produced and Released from Artery and Vein is Nitric Oxide (1987) Proc. Natl. Acad. Sci. U. S. A., 84, pp. 9265-9269 
504 |a Palmer, R.M.J., Ashton, D.S., Moncada, S., Vascular Endothelial Cells Synthesize Nitric Oxide from L-arginine (1988) Nature, 333, pp. 664-666 
504 |a Ignarro, L.J., Murad, F., (1995) Nitric Oxide: Biochemistry, Molecular Biology and Therapeutic Implications, , Academic Press: San Diego, CA 
504 |a Ignarro, L.J., Endothelium-Derived Nitric Oxide: Pharmacology and Relationship to the Actions of Organic Nitrate Esters (1989) Pharm. Res., 6, pp. 651-659 
504 |a Culotta, E., Koshland, D.E., NO News is Good news (1992) Science, 258, pp. 1862-1865 
504 |a Feldman, P.L., Griffith, O.W., Stuehr, D., The Surprising Life of Nitric Oxide (1993) Chem. Eng. News, 71, pp. 26-38 
504 |a Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press: New York 
504 |a Wink, A.A., Darbyshire, J.F., Nims, R.W., Saavedra, J.E., Ford, P.C., Reactions of the Bioregulatory Agent Nitric Oxide in Oxygenated Aqueous Media: Determination of the Kinetics for Oxidation and Nitrosation by Intermediates Generated in the NO/O2 Reaction (1993) Chem. Res. Toxicol., 6, pp. 23-27 
504 |a Chiang, T.M., Sayre, R.M., Dowdy, J.C., Wilkin, N.K., Rosenberg, E.W., Sunscreen ingredients inhibit inducible nitric oxide synthase (iNOS): A possible biochemical explanation for the sunscreen melanoma controversy (2005) Melanoma Res., 15, pp. 3-6 
504 |a Weller, R., Nitric Oxide: A Key Mediator in Cutaneous Physiology (2003) Clin. Exp. Dermatol., 28, pp. 511-514 
504 |a Stamler, J.S., Singel, D.J., Loscalzo, J., Biochemistry of nitric oxide and its redox-activated forms (1992) Science, 258, pp. 1898-1902 
504 |a Shafirovich, V., Lymar, S.V., Nitroxyl and its Anion in Aqueous Solutions: Spin States, Protic Equilibria, and Reactivities Toward Oxygen and Nitric Oxide (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 7340-7345 
504 |a Bartberger, M.D., Liu, W., Ford, E., Miranda, K.M., Switzer, C., Fukuto, J.M., Farmer, P.J., Houk, K.N., The Reduction Potential of Nitric Oxide (NO) and its Importance to NO Biochemistry (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 10958-10963 
504 |a Hamer, M., Suarez, S.A., Neuman, N.I., Alvarez, L., Muñoz, M., Marti, M.A., Doctorovich, F., Discussing Endogenous NO•/HNO Interconversion Aided by Phenolic Drugs and Vitamins (2015) Inorg. Chem., 54, pp. 9342-9350 
504 |a Suarez, A.A., Neuman, N.I., Muñoz, M., Álvarez, L., Bikiel, D.E., Brondino, C.D., Ivanović-Burmazović, I., Doctorovich, F., Nitric Oxide is Reduced to HNO by Proton-Coupled Nucleophilic Attack by Ascorbate, Tyrosine, and Other Alcohols. A New Route to HNO in Biological Media? (2015) J. Am. Chem. Soc., 137, pp. 4720-4727 
504 |a Zhang, Y., Computational Investigations of HNO in Biology (2013) J. Inorg. Biochem., 118, pp. 191-200 
504 |a Parr, R.G., Yang, W., (1989) Density Functional Theory of Atoms and Molecules, , Oxford University Press: New York 
504 |a Staroverov, V.N., Scuseria, G.E., Tao, J., Perdew, J.P., Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes (2003) J. Chem. Phys., 119, pp. 12129-12137 
504 |a Shavitt, I., Bartlett, R.J., (2009) Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, , Cambridge University Press: New York 
504 |a Neese, F., Liakos, D.G., Ye, S.F., Correlated Wavefunction Methods in Bioinorganic Chemistry (2011) JBIC, J. Biol. Inorg. Chem., 16, pp. 821-829 
504 |a Harvey, J.N., The coupled-cluster description of electronic structure: Perspectives for bioinorganic chemistry (2011) JBIC, J. Biol. Inorg. Chem., 16, pp. 831-839 
504 |a Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305 
504 |a Marenich, A.V., Cramer, C.J., Truhlar, D.G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions (2009) J. Phys. Chem. B, 113, pp. 6378-6396 
504 |a Klamt, A., Schuurmann, G., COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient (1993) J. Chem. Soc., Perkin Trans. 2, pp. 799-805 
504 |a Allen, M.P., Tildesley, D.J., (1989) Computer Simulation of Liquids, , Oxford University Press: Oxford, U.K 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935 
504 |a Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids (1996) J. Am. Chem. Soc., 118, pp. 11225-11236 
504 |a Breneman, C.M., Wiberg, K.B., Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis (1990) J. Comput. Chem., 11, pp. 361-373 
504 |a Coutinho, K., Canuto, S., Zerner, M.C., A Monte Carlo-Quantum Mechanics study of the solvatochromic shifts of the lowest transition of benzene (2000) J. Chem. Phys., 112, pp. 9874-9880 
504 |a Canuto, S., Coutinho, K., From Hydrogen Bond to Bulk: Solvation Analysis of the n→π∗ Transition of Formaldehyde in Water (2000) Int. J. Quantum Chem., 77, pp. 192-198 
504 |a Coutinho, K., Canuto, S., (2003) DICE (Version 2.9): A Monte Carlo Program for Liquid Simulation, , University of São Paulo: São Paulo, Brazil 
504 |a qvist, J., Medina, C., Samuelson, J.-E., A new method for predicting binding affinity in computer-aided drug design (1994) Protein Eng., Des. Sel., 7, pp. 385-391 
504 |a Carlson, H.A., Jorgensen, W.L., An Extended Linear Response Method for Determining Free Energies of Hydration (1995) J. Phys. Chem., 99, pp. 10667-10673 
504 |a De Lima, G.F., Duarte, H.A., Pliego, J.R., Jr., Dynamical Discrete/Continuum Linear Response Shells Theory of Solvation: Convergence Test for NH4+ and OH- Ions in Water Solution Using DFT and DFTB Methods (2010) J. Phys. Chem. B, 114, pp. 15941-15947 
504 |a Neese, F., The ORCA program system (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 73-78 
504 |a Rulíšek, L., On the Accuracy of Calculated Reduction Potentials of Selected Group 8 (Fe, Ru, and Os) Octahedral Complexes (2013) J. Phys. Chem. C, 117, pp. 16871-16877 
504 |a Isse, A.A., Gennaro, A., Absolute Potential of the Standard Hydrogen Electrode and the Problem of Interconversion of Potentials in Different Solvents (2010) J. Phys. Chem. B, 114, pp. 7894-7899 
504 |a Rodrigues, G.L.S., Rocha, W.R., Formation and Release of NO from Ruthenium Nitrosyl Ammine Complexes [Ru(NH3)5(NO)]2+/3+ in aqueous solution: A Theoretical Investigation (2016) J. Phys. Chem. B, 120, pp. 11821-11833 
504 |a Venâncio, M.F., Rocha, W.R., Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states (2015) Chem. Phys. Lett., 638, pp. 9-14 
504 |a Stanbury, D.M., Reduction Potentials Involving Inorganic Free Radicals in Aqueous Solution (1989) Adv. Inorg. Chem., 33, pp. 69-138 
504 |a Anderson, W.R., Heats of formation of HNO and some related species (1999) Combust. Flame, 117, pp. 394-403 
504 |a Chase, M.W., Jr., (1998) J. Phys. Chem. Ref. Data, , Monograph 9 (Part I and Part II) 
504 |a Bratsch, S.G., Standard electrode potentials and temperature coefficients in water at 298.15 K (1989) J. Phys. Chem. Ref. Data, 18, pp. 1-21 
504 |a Dutton, A.S., Fukuto, J.M., Houk, K.N., Theoretical reduction potentials for nitrogen oxides from CBS-QB3 energetics and (C)PCM solvation calculations (2005) Inorg. Chem., 44, pp. 4024-4028 
504 |a Kirchner, B., Eigen or Zundel ion: News from calculated and experimental photoelectron spectroscopy (2007) ChemPhysChem, 8, pp. 41-43 
504 |a Powell, D.R., Adams, E.T., Jr., Self-association of gases 1. Theory. Application to the nitrogen dioxide-dinitrogen tetraoxide system (1978) J. Phys. Chem., 82, pp. 1947-1952 
504 |a Haynes, W.M., (2011) CRC Handbook of Chemistry and Physics, , 92 th ed. CRC Press: Boca Raton, FL 
504 |a (2017) MarvinView, , http://www.chemaxon.com, (version 17.4.30), ChemAxon (), accessed June 16, 2017 
504 |a Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., Kichck, T.I., Filipovic, M.R., H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway (2014) Nat. Commun., 5, pp. 4381-4397 
504 |a Filipovic, M.R., Eberhardt, M., Prokopovic, V., Mijuskovic, A., Orescanin-Dusic, Z., Reeh, P., Ivanovic-Burmazovic, I., Beyond H2S and NO interplay: Hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO (2013) J. Med. Chem., 56, pp. 1499-1508 
504 |a Filipovic, M.R.M., Miljkovic, J.L.J., Nauser, T., Royzen, M., Klos, K., Shubina, T., Koppenol, W.H., Ivanovic, I., Chemical Characterization of the Smallest S-Nitrosothiol, HSNO; Cellular Cross-talk of H2S and S-Nitrosothiols (2012) J. Am. Chem. Soc., 134, pp. 12016-12027 
504 |a Miljkovic, J.L., Kenkel, I., Ivanović-Burmazović, I., Filipovic, M.R., Generation of HNO and HSNO from Nitrite by Heme-Iron-Catalyzed Metabolism with H2S (2013) Angew. Chem., Int. Ed., 52, pp. 12061-12064 
504 |a Harvey, J.N., Understanding the Kinetics of Spin-Forbidden Chemical Reactions (2007) Phys. Chem. Chem. Phys., 9, pp. 331-343 
504 |a Lykhin, A.O., Kaliakin, D.S., Depolo, G.E., Kuzubov, A.A., Varganov, S.A., Nonadiabatic Transition State Theory: Application to Intersystem Crossings in the Active Sites of Metal-Sulfur Proteins (2016) Int. J. Quantum Chem., 116, pp. 750-761 
520 3 |a In this work, quantum mechanical calculations and Monte Carlo statistical mechanical simulations were carried out to investigate the solvation properties of HNO in aqueous solution and to evaluate the proton-coupled one electron reduction potential of 2NO to 1HNO, which is essential missing information to understand the fate of 2NO in the biological medium. Our results showed that the 1HNO molecule acts mainly as a hydrogen bond donor in aqueous solution with an average energy of -5.5 ± 1.3 kcal/mol. The solvation free energy of 1HNO in aqueous solution, computed using three approaches based on the linear response theory, revealed that the current prediction of the hydration free energy of HNO is, at least, 2 times underestimated. We proposed two pathways for the production of HNO through reduction of NO. The first pathway is the direct reduction of NO through proton-coupled electron transfer to produce HNO, and the second path is the reduction of the radical anion HONO•-, which is involved in equilibrium with NO in aqueous solution. We have shown that both pathways are viable processes under physiological conditions, having reduction potentials of E°′ = -0.161 V and E°′ ≈ 1 V for the first and second pathways, respectively. The results shows that both processes can be promoted by well-known biological reductants such as NADH, ascorbate, vitamin E (tocopherol), cysteine, and glutathione, for which the reduction potential at physiological pH is around -0.3 to -0.5 V. The computed reduction potential of NO through the radical anion HONO•- can also explain the recent experimental findings on the formation of HNO through the reduction of NO, promoted by H2S, vitamin C, and aromatic alcohols. Therefore, these results contribute to shed some light into the question of whether and how HNO is produced in vivo and also for the understanding of the biochemical and physiological effects of NO. © 2017 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de Minas Gerais 
536 |a Detalles de la financiación: Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2014-1278 
536 |a Detalles de la financiación: Fundação de Amparo à Pesquisa do Estado de Minas Gerais 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors would like to thank the CNPq (Conselho Nacional de Desenvolvimento Cientif? co e Tecnol?gico, INCT-Cat?lise) and FAPEMIG (Funda??o de Amparo ? Pesquisa do Estado de Minas Gerais) and ANPCYT (PICT 2014-1278) for the financial support and research grants. F.D. is a member of CONICET. 
593 |a Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG 31270-901, Brazil 
593 |a Departamento de Química Inorganica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a AMINO ACIDS 
690 1 0 |a BIOINFORMATICS 
690 1 0 |a ELECTRON TRANSITIONS 
690 1 0 |a FREE ENERGY 
690 1 0 |a FREE RADICAL REACTIONS 
690 1 0 |a HYDROGEN BONDS 
690 1 0 |a MONTE CARLO METHODS 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a SOLUTIONS 
690 1 0 |a SOLVATION 
690 1 0 |a HYDRATION FREE ENERGIES 
690 1 0 |a LINEAR-RESPONSE THEORY 
690 1 0 |a ONE-ELECTRON REDUCTION POTENTIALS 
690 1 0 |a PHYSIOLOGICAL CONDITION 
690 1 0 |a PROTON COUPLED ELECTRON TRANSFERS 
690 1 0 |a QUANTUM-MECHANICAL CALCULATION 
690 1 0 |a SOLVATION FREE ENERGIES 
690 1 0 |a THEORETICAL INVESTIGATIONS 
690 1 0 |a REDUCTION 
650 1 7 |2 spines  |a PH 
700 1 |a Doctorovich, F. 
700 1 |a Rocha, W.R. 
773 0 |d American Chemical Society, 2017  |g v. 121  |h pp. 6618-6625  |k n. 27  |p J Phys Chem B  |x 15206106  |w (AR-BaUEN)CENRE-5879  |t Journal of Physical Chemistry B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85024921167&doi=10.1021%2facs.jpcb.7b03552&partnerID=40&md5=1b4eed6c072d9c5004f4a6552bb3fcc7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jpcb.7b03552  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15206106_v121_n27_p6618_Venancio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v121_n27_p6618_Venancio  |y Registro en la Biblioteca Digital 
961 |a paper_15206106_v121_n27_p6618_Venancio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 78611