Lipid electropore stabilization

The stabilization of pores can be studied by different approaches such as simulations in silico or experimental procedures in vivo or in vitro. The energy to open a pore in a lipid membrane can be delivered by different external stimuli. To disrupt the membrane and initiate the pore opening, this en...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fernández, M.L
Otros Autores: Risk, M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer International Publishing 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10417caa a22007697a 4500
001 PAPER-17609
003 AR-BaUEN
005 20230518204856.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85044057569 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Fernández, M.L. 
245 1 0 |a Lipid electropore stabilization 
260 |b Springer International Publishing  |c 2017 
270 1 0 |m Fernández, M.L.; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Física del Plasma, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: mlfernandez@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Barnett, A., Weaver, J.C., Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes (1991) Bioelectrochem Bioenerg, 25, pp. 163-182 
504 |a Böckmann, R.A., de Groot, B.L., Kakorin, S., Neumann, E., Grubmüller, H., Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations (2008) Biophys J, 95, pp. 1837-1850 
504 |a Casciola, M., Kasimova, M.A., Rems, L., Zullino, S., Apollonio, F., Tarek, M., Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance (2016) Bioelectrochemistry, 109, pp. 108-116 
504 |a Delemotte, L., Dehez, F., Treptow, W., Tarek, M., Modeling membranes under a transmembrane potential (2008) J Phys Chem B, 112, pp. 5547-5550 
504 |a Fernández, M.L., Reigada, R., Effects of dimethyl sulfoxide on lipid membrane electroporation (2014) J Phys Chem B, 118, pp. 9306-9312 
504 |a Fernández, M.L., Risk, M., Reigada, R., Vernier, P.T., Size-controlled nanopores in lipid membranes with stabilizing electric fields (2012) Biochem Biophys Res Commun, 423, pp. 325-330 
504 |a Gurtovenko, A.A., Anwar, J., Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide (2007) J Phys Chem B, 111, pp. 10453-10460 
504 |a Gurtovenko, A.A., Vattulainen, I., Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study (2005) J Am Chem Soc, 127, pp. 17570-17571 
504 |a Ho, M.-C., Casciola, M., Levine, Z.A., Vernier, P.T., Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores (2013) J Phys Chem B, 117, pp. 11633-11640 
504 |a Humphrey, W., Dalke, A., Schulten, K., VMD - visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38. , http://www.ks.uiuc.edu/Research/vmoleculardynamics 
504 |a Kirsch, S.A., Böckmann, R.A., Membrane pore formation in atomistic and coarse-grained simulations (2015) Biochim Biophys Acta 
504 |a Kohler, S., Levine, Z.A., García-Fernández, M.A., Ho, M.-C., Vernier, P.T., Electrical analysis of cell membrane poration by an intense nanosecond pulsed electric field using an atomistic-tocontinuum method (2015) IEEE Trans Microwave Theory Techn, 63, pp. 2032-2040 
504 |a Koronkiewicz, S., Kalinowski, S., Bryl, K., Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes (2002) Biochim Biophys Acta, 1561, pp. 222-229 
504 |a Kutzner, C., Grubmüller, H., de Groot, B.L., Zachariae, U., Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail (2011) Biophys J, 101, pp. 809-817 
504 |a Leguèbe, M., Silve, A., Mir, L.M., Poignard, C., Conducting and permeable states of cell memabrane submitted to high voltage pulses: mathematichal and numerical studies validated by the experiments (2014) J Theor Biol, 360, pp. 83-94 
504 |a Leontiadou, H., Mark, A.E., Marrink, S.J., Molecular dynamics simulations of hydrophilic pores in lipid bilayers (2004) Biophys J, 86, pp. 2156-2164 
504 |a Leontiadou, H., Mark, A.E., Marrink, S.J., Ions transport across transmembrane pores (2007) Biophys J, 86, pp. 2156-2164 
504 |a Levine, Z.A., Vernier, P.T., Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation (2010) J Membr Biol, 236, pp. 27-36 
504 |a Pakhomov, A.G., Bowman, A.M., Ibey, B.L., Andre, F.M., Pakhomova, O.N., Schoenbach, K.H., Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane (2009) Biochem Biophys Res Commun, 385, pp. 181-186 
504 |a Pakhomova, O.N., Gregory, B.W., Khorokhorina, V.A., Bowman, A.M., Xiao, S., Pakhomov, A.G., Electroporation-induced electrosensitization (2011) PLOS One, 6 
504 |a Piggot, T.J., Holdbrook, D.A., Khalid, S., Electroporation of the E (2011) coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B, 115, pp. 13381-13388 
504 |a Polak, A., Velikonja, A., Kramar, P., Tarek, M., Miklavcic, D., Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8) (2015) J Phys Chem B, 119, pp. 192-200 
504 |a Sachs, J.N., Crozier, P.S., Woolf, T.B., Atomistic simulations of biologically realistic transmembrane potential gradients (2004) J CHem Phys, 121, pp. 10847-10851 
504 |a Silve, A., Brunet, A.G., Al-Sakere, B., Ivorra, A., Mir, L.M., Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? (2014) Biochim Biophys Acta, 1840, pp. 2139-2215 
504 |a Son, R.S., Smith, K.C., Gowrishankar, T.R., Vernier, P.T., Weaver, J.C., Basic features of a cell electroporation model: illustrative behavior for two very different pulses (2014) J Membr Biol, 247, pp. 1209-1228 
504 |a Swezey, R.R., Epel, D., Stable, resealable pores formed in sea urchin eggs by electric discharge (electroporation) permit substrate loading for assay of enzymes in vivo (1989) Cell Regul, 1, pp. 65-74 
504 |a Tarek, M., Membrane electroporation: a molecular dynamics simulation (2005) Biophys J, 88, pp. 4045-4053 
504 |a Tieleman, D.P., The molecular basis of electroporation (2004) BMC Biochem, 5, p. 10 
504 |a Tokman, M., Lee, J.H., Levine, Z.A., Ho, M.-C., Colvin, M.E., Vernier, P.T., Electric field-driven water dipoles: nanoscale architecture of electroporation (2013) PLOS One, 8 
504 |a Troiano, G.C., Tung, L., Sharma, V., Stebe, K.J., The Reduction in Electroporation Voltages by the Addition of a Surfactant to Planar Lipid Bilayers (1998) Biophys J, 75, pp. 880-888 
504 |a Tsong, T.Y., Electroporation of cell membranes (1991) Biophys J, 60, pp. 297-306 
504 |a Vernier, P.T., Ziegler, M.J., Sun, Y., Gundersen, M.A., Tieleman, D.P., Nanopore-facilitated, voltagedriven phosphatidylserine translocation in lipid bilayers-in cells and in silico (2006) Phys Biol, 3, pp. 233-247 
520 3 |a The stabilization of pores can be studied by different approaches such as simulations in silico or experimental procedures in vivo or in vitro. The energy to open a pore in a lipid membrane can be delivered by different external stimuli. To disrupt the membrane and initiate the pore opening, this energy has to reach a threshold. Then, once the pore is open, the external stimulus can be modulated to maintain the pore stable in time. This chapter first describes the basics of electropermeabilization, a process also called electroporation, and the basics of molecular dynamics in electropermeabilization. The chapter then describes in detail the molecular changes that lead to the pore opening and evolution by molecular dynamics. The chapter focuses on molecular dynamics because this technique allows the study of pore stabilization at molecular level, the interpretation of the lipid and water molecule rearrangements that are behind this phenomenon, and the visualization of the pore at the scale of size and time, in the order of nanometers and nanoseconds, respectively. Finally, the chapter also describes other approaches where pores remain open or the permeabilized state remains stable for a period of time, such as continuum modeling, experiments in planar membranes, and experiments in cells. The objective of this selection is to relate the results obtained by molecular dynamics with those obtained experimentally, or by other types of modeling, aiming to connect the mechanisms of pore stabilization by molecular dynamics at different scales. © Springer International Publishing AG 2017. All rights are reserved.  |l eng 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Física del Plasma, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 
593 |a Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina 
690 1 0 |a ELECTROPERMEABILIZATION 
690 1 0 |a ELECTROPORATION 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a PORE STABILIZATION 
700 1 |a Risk, M.R. 
773 0 |d Springer International Publishing, 2017  |g v. 1  |h pp. 77-93  |p Handb. of Electroporation  |z 9783319328867  |z 9783319328850  |t Handbook of Electroporation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044057569&doi=10.1007%2f978-3-319-32886-7_83&partnerID=40&md5=77796007bda20b51b4e05b9e97b3be02  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-3-319-32886-7_83  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97833193_v1_n_p77_Fernandez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97833193_v1_n_p77_Fernandez  |y Registro en la Biblioteca Digital 
961 |a paper_97833193_v1_n_p77_Fernandez  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 78562