Multilinear Marcinkiewicz-Zygmund Inequalities
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on ℓ r -valued extensions of linear operators. We show that for certain 1 ≤ p, q 1 , ⋯ , q m , r≤ ∞, there is a constant C≥ 0 such that for every bounded multilinear operator T:Lq1(μ1)×⋯×Lqm(μm)→Lp(ν) and functi...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Birkhauser Boston
2019
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 07468caa a22007577a 4500 | ||
|---|---|---|---|
| 001 | PAPER-17569 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204851.0 | ||
| 008 | 190410s2019 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85029158699 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Carando, D. | |
| 245 | 1 | 0 | |a Multilinear Marcinkiewicz-Zygmund Inequalities |
| 260 | |b Birkhauser Boston |c 2019 | ||
| 270 | 1 | 0 | |m Ombrosi, S.; Departamento de Matemática, Universidad Nacional del SurArgentina; email: sombrosi@uns.edu.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Benea, C., Muscalu, C., Multiple vector valued inequalities via the helicoidal method (2016) Anal. PDE, 9, pp. 1931-1988 | ||
| 504 | |a Benea, C., Muscalu, C., Quasi-Banach valued inequalities via the helicoidal method, , Preprint | ||
| 504 | |a Bergh, J., Interpolation Spaces (1976) An Introduction. Grund- Lehren Der Mathematischen Wissenschaften, 223. , L o ¨ fstr o ¨ m, J, Springer, Berlin | ||
| 504 | |a Boas, H., Majorant series (2000) J. Korean Math. Soc., 37 (2), pp. 321-337 | ||
| 504 | |a Bombal, F., Pérez-García, D., Villanueva, I., Multilinear extensions of Grothendieck’s theorem (2004) Quart. J. Math., 55 (4), pp. 441-450 | ||
| 504 | |a Bohnenblust, H.F., Hille, E., On the absolute convergence of Dirichlet series (1931) Ann. Math., 32 (3), pp. 600-622 | ||
| 504 | |a Culiuc, A., Di Plinio, F., Ou, Y., Domination of multilinear singular integrals by positive sparse forms | ||
| 504 | |a Cruz-Uribe, D., Martell, J.M., Pérez, C., Extrapolation from A ∞ weights and applications (2004) J. Funct. Anal., 213 (2), pp. 412-439 | ||
| 504 | |a Curbera, G., García-Cuerva, J., Martell, J.M., Pérez, C., Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals (2006) Adv. Math., 203, pp. 256-318 | ||
| 504 | |a Davie, A.M., Quotient algebras of uniform algebras (1973) J. London Math. Soc., 7 (2), pp. 31-40 | ||
| 504 | |a Defant, A., Floret, K., (1993) Tensor Norms and Operator Ideals, 176. , North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam | ||
| 504 | |a Defant, A., Junge, M., Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities (1997) Studia Math., 125 (3), pp. 271-287 | ||
| 504 | |a Defant, A., Mastyło, M., Interpolation of Fremlin tensor products and Schur factorization of matrices (2012) J. Funct. Anal., 262, pp. 3981-3999 | ||
| 504 | |a Defant, A., Sevilla-Peris, P., A new multilinear insight on littlewood’s 4/3-inequality (2009) J. Funct. Anal., 256 (5), pp. 1642-1664 | ||
| 504 | |a Di Plinio, F., Ou, Y., Banach-valued multilinear singular integrals, , Preprint, To appear in Indiana Univ. Math. J | ||
| 504 | |a García-Cuerva, J., Rubio de Francia, J.L., (1985) Weighted Norm Inequalities and Related Topics, 116. , North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam | ||
| 504 | |a Gasch, J., Maligranda, L., On vector-valued inequalities of Marcinkiewicz-Zygmund, Herz and Krivine type (1994) Math. Nachr., 167, pp. 95-129 | ||
| 504 | |a Grafakos, L., Martell, J.M., Extrapolation of weighted norm inequalities for multivariable operators and applications (2004) J. Geom. Anal., 14 (1), pp. 19-46 | ||
| 504 | |a Grafakos, L., Torres, R.H., Multilinear Calderón-Zygmund theory (2002) Adv. Math., 165 (1), pp. 124-164 | ||
| 504 | |a Grafakos, L., Torres, R.H., Maximal operator and weighted norm inequalities for multilinear singular integrals (2002) Indiana Univ. Math. J., 51 (5), pp. 1261-1276 | ||
| 504 | |a Herz, C., Theory of p -spaces with an application to convolution operators (1971) Trans. Am. Math. Soc., 154, pp. 69-82 | ||
| 504 | |a Kaijser, S., Some results in the metric theory of tensor products (1978) Studia Math., 63 (2), pp. 157-170 | ||
| 504 | |a Lerner, A., Ombrosi, S., Pérez, C., Torres, R., Trujillo-González, R., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory (2009) Adv. Math., 220 (4), pp. 1222-1264 | ||
| 504 | |a Marcinkiewicz, J., Zygmund, A., Quelques inégalités pour les opérations linéaires (1939) Fund. Math., 32, pp. 113-121 | ||
| 504 | |a Pérez, C., Torres, R.H., Sharp maximal function estimates for multilinear singular integrals (2003) Contemp. Math., 320, pp. 323-333 | ||
| 504 | |a Pietsch, A., (1980) Operator Ideals, , North-Holland Publishing Co., Amsterdam | ||
| 504 | |a Quefflec, H.H., Bohr’s vision of ordinary Dirichlet series; old and new results (1995) J. Anal., 3, pp. 43-60 | ||
| 520 | 3 | |a We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on ℓ r -valued extensions of linear operators. We show that for certain 1 ≤ p, q 1 , ⋯ , q m , r≤ ∞, there is a constant C≥ 0 such that for every bounded multilinear operator T:Lq1(μ1)×⋯×Lqm(μm)→Lp(ν) and functions {fk11}k1=1n1⊂Lq1(μ1),⋯,{fkmm}km=1nm⊂Lqm(μm), the following inequality holds ∥(∑k1,⋯,km|T(fk11,⋯,fkmm)|r)1/r∥Lp(ν)≤C‖T‖∏i=1m∥(∑ki=1ni|fkii|r)1/r∥Lqi(μi).In some cases we also calculate the best constant C≥ 0 satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators. © 2017, Springer Science+Business Media, LLC. |l eng | |
| 536 | |a Detalles de la financiación: PIP 11220130100329CO | ||
| 536 | |a Detalles de la financiación: UBACyT, 20020130100474, PICT 2015-2299 | ||
| 536 | |a Detalles de la financiación: Acknowledgements The authors wish to thank C. Muscalu for his valuable comments regarding this work. This project was supported in part by CONICET PIP 11220130100329CO, ANPCyT PICT 2015-2299 and UBACyT 20020130100474. The second author has a postdoctoral position from CONICET. | ||
| 593 | |a Departamento de Matemática - Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina | ||
| 593 | |a IMAS-CONICET, Buenos Aires, Argentina | ||
| 593 | |a Instituto Balseiro, Universidad Nacional de Cuyo - C.N.E.A., Buenos Aires, Argentina | ||
| 593 | |a Departamento de Matemática, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, 8400, Argentina | ||
| 593 | |a Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina | ||
| 593 | |a INMABB-CONICET, Bahía Blanca, Argentina | ||
| 690 | 1 | 0 | |a CALDERON-ZYGMUND OPERATORS |
| 690 | 1 | 0 | |a MULTILINEAR OPERATORS |
| 690 | 1 | 0 | |a VECTOR-VALUED INEQUALITIES |
| 700 | 1 | |a Mazzitelli, M. | |
| 700 | 1 | |a Ombrosi, S. | |
| 773 | 0 | |d Birkhauser Boston, 2019 |g v. 25 |h pp. 51-85 |k n. 1 |p J. Fourier Anal. Appl. |x 10695869 |t Journal of Fourier Analysis and Applications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029158699&doi=10.1007%2fs00041-017-9563-5&partnerID=40&md5=023c4c60e120eb88bfc8692e55f46b42 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00041-017-9563-5 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_10695869_v25_n1_p51_Carando |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10695869_v25_n1_p51_Carando |y Registro en la Biblioteca Digital |
| 961 | |a paper_10695869_v25_n1_p51_Carando |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 78522 | ||