A note on a system with radiation boundary conditions with non-symmetric linearisation
We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall pro...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Springer-Verlag Wien
2018
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 04911caa a22005177a 4500 | ||
|---|---|---|---|
| 001 | PAPER-17566 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204851.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85029546590 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Amster, P. | |
| 245 | 1 | 2 | |a A note on a system with radiation boundary conditions with non-symmetric linearisation |
| 260 | |b Springer-Verlag Wien |c 2018 | ||
| 270 | 1 | 0 | |m Amster, P.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: pamster@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Amster, P., Multiple Solutions for an Elliptic System with Indefinite Robin Boundary Conditions, , To appear in Advances in Nonlinear Analysis | ||
| 504 | |a Amster, P., Kuna, M.P., Multiple solutions for a second order equation with radiation boundary conditions (2017) Electron. J. Qual. Theory Differ. Equ., 2017 (37), pp. 1-11 | ||
| 504 | |a Amster, P., Kuna, M.P., On Exact Multiplicity for a Second Order Equation with Radiation Boundary Conditions, , Submitted | ||
| 504 | |a Amster, P., Kwong, M.K., Rogers, C., A Painlevé II model in two-ion electrodiffusion with radiation boundary conditions (2013) Nonlinear Anal. Real World Appl., 16, pp. 120-131 | ||
| 504 | |a Bates, P., Solutions of nonlinear elliptic systems with meshed spectra (1980) Nonlinear Anal. Theory Methods Appl., 4 (6), pp. 1023-1030 | ||
| 504 | |a Capietto, A., Dambrosio, W., Multiplicity results for systems of superlinear second order equations (2000) J. Math. Anal. Appl., 248, pp. 532-548 | ||
| 504 | |a Capietto, A., Dambrosio, W., Papini, D., Detecting multiplicity for systems of second-order equations: an alternative approach (2005) Adv. Differ. Equ., 10 (5), pp. 553-578 | ||
| 504 | |a Gritsans, A., Sadyrbaev, F., Yermachenko, I., Dirichlet boundary value problem for the second order asymptotically linear system (2016) Int. J. Differ. Equ., 2016, pp. 1-12 | ||
| 504 | |a Hartman, P., On boundary value problems for systems of ordinary nonlinear second order differential equations (1960) Trans. Am. Math. Soc., 96, pp. 493-509 | ||
| 504 | |a Lazer, A., Application of a lemma on bilinear forms to a problem in nonlinear oscillation (1972) Am. Math. Soc., 33, pp. 89-94 | ||
| 504 | |a Smale, S., An infinite dimensional version of Sard’s theorem (1965) Am. J. Math., 87 (4), pp. 861-866 | ||
| 504 | |a Yermachenko, I., Sadyrbaev, F., On a problem for a system of two second-order differential equations via the theory of vector fields (2015) Nonlinear Anal. Model. Control, 20 (2), pp. 175-189 | ||
| 520 | 3 | |a We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric. © 2017, Springer-Verlag GmbH Austria. |l eng | |
| 536 | |a Detalles de la financiación: PIP 11220130100006CO | ||
| 536 | |a Detalles de la financiación: Acknowledgements The authors thank the referees for the careful reading of the manuscript and insightful comments. This work was partially supported by projects UBACyT 20020120100029BA and CONICET PIP 11220130100006CO. | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina | ||
| 593 | |a IMAS - CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina | ||
| 690 | 1 | 0 | |a MULTIPLICITY |
| 690 | 1 | 0 | |a RADIATION BOUNDARY CONDITIONS |
| 690 | 1 | 0 | |a SECOND ORDER ODE SYSTEMS |
| 690 | 1 | 0 | |a TOPOLOGICAL DEGREE |
| 700 | 1 | |a Kuna, M.P. | |
| 773 | 0 | |d Springer-Verlag Wien, 2018 |g v. 186 |h pp. 565-577 |k n. 4 |p Monatsh. Math. |x 00269255 |t Monatshefte fur Mathematik | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029546590&doi=10.1007%2fs00605-017-1098-y&partnerID=40&md5=852dd6363b743e946c7cc41ef8087883 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00605-017-1098-y |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00269255_v186_n4_p565_Amster |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00269255_v186_n4_p565_Amster |y Registro en la Biblioteca Digital |
| 961 | |a paper_00269255_v186_n4_p565_Amster |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 78519 | ||