A note on a system with radiation boundary conditions with non-symmetric linearisation

We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Amster, P.
Otros Autores: Kuna, M.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer-Verlag Wien 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04911caa a22005177a 4500
001 PAPER-17566
003 AR-BaUEN
005 20230518204851.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85029546590 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Amster, P. 
245 1 2 |a A note on a system with radiation boundary conditions with non-symmetric linearisation 
260 |b Springer-Verlag Wien  |c 2018 
270 1 0 |m Amster, P.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: pamster@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Amster, P., Multiple Solutions for an Elliptic System with Indefinite Robin Boundary Conditions, , To appear in Advances in Nonlinear Analysis 
504 |a Amster, P., Kuna, M.P., Multiple solutions for a second order equation with radiation boundary conditions (2017) Electron. J. Qual. Theory Differ. Equ., 2017 (37), pp. 1-11 
504 |a Amster, P., Kuna, M.P., On Exact Multiplicity for a Second Order Equation with Radiation Boundary Conditions, , Submitted 
504 |a Amster, P., Kwong, M.K., Rogers, C., A Painlevé II model in two-ion electrodiffusion with radiation boundary conditions (2013) Nonlinear Anal. Real World Appl., 16, pp. 120-131 
504 |a Bates, P., Solutions of nonlinear elliptic systems with meshed spectra (1980) Nonlinear Anal. Theory Methods Appl., 4 (6), pp. 1023-1030 
504 |a Capietto, A., Dambrosio, W., Multiplicity results for systems of superlinear second order equations (2000) J. Math. Anal. Appl., 248, pp. 532-548 
504 |a Capietto, A., Dambrosio, W., Papini, D., Detecting multiplicity for systems of second-order equations: an alternative approach (2005) Adv. Differ. Equ., 10 (5), pp. 553-578 
504 |a Gritsans, A., Sadyrbaev, F., Yermachenko, I., Dirichlet boundary value problem for the second order asymptotically linear system (2016) Int. J. Differ. Equ., 2016, pp. 1-12 
504 |a Hartman, P., On boundary value problems for systems of ordinary nonlinear second order differential equations (1960) Trans. Am. Math. Soc., 96, pp. 493-509 
504 |a Lazer, A., Application of a lemma on bilinear forms to a problem in nonlinear oscillation (1972) Am. Math. Soc., 33, pp. 89-94 
504 |a Smale, S., An infinite dimensional version of Sard’s theorem (1965) Am. J. Math., 87 (4), pp. 861-866 
504 |a Yermachenko, I., Sadyrbaev, F., On a problem for a system of two second-order differential equations via the theory of vector fields (2015) Nonlinear Anal. Model. Control, 20 (2), pp. 175-189 
520 3 |a We prove the existence of multiple solutions for a second order ODE system under radiation boundary conditions. The proof is based on the degree computation of I- K, where K is an appropriate fixed point operator. Under a suitable asymptotic Hartman-like assumption for the nonlinearity, we shall prove that the degree is 1 over large balls. Moreover, studying the interaction between the linearised system and the spectrum of the associated linear operator, we obtain a condition under which the degree is - 1 over small balls. We thus generalize a result obtained in a previous work for the case in which the linearisation is symmetric. © 2017, Springer-Verlag GmbH Austria.  |l eng 
536 |a Detalles de la financiación: PIP 11220130100006CO 
536 |a Detalles de la financiación: Acknowledgements The authors thank the referees for the careful reading of the manuscript and insightful comments. This work was partially supported by projects UBACyT 20020120100029BA and CONICET PIP 11220130100006CO. 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a IMAS - CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina 
690 1 0 |a MULTIPLICITY 
690 1 0 |a RADIATION BOUNDARY CONDITIONS 
690 1 0 |a SECOND ORDER ODE SYSTEMS 
690 1 0 |a TOPOLOGICAL DEGREE 
700 1 |a Kuna, M.P. 
773 0 |d Springer-Verlag Wien, 2018  |g v. 186  |h pp. 565-577  |k n. 4  |p Monatsh. Math.  |x 00269255  |t Monatshefte fur Mathematik 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029546590&doi=10.1007%2fs00605-017-1098-y&partnerID=40&md5=852dd6363b743e946c7cc41ef8087883  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00605-017-1098-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00269255_v186_n4_p565_Amster  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00269255_v186_n4_p565_Amster  |y Registro en la Biblioteca Digital 
961 |a paper_00269255_v186_n4_p565_Amster  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78519