Oxidative stress and cellular and tissue damage in organogenic outbred mouse embryos after moderate perigestational alcohol intake

Perigestational alcohol consumption by CF-1 mouse, from before mating up to the period of embryo organogenesis, leads to retarded early embryo development and neural tube defects. Here, we addressed if perigestational alcohol ingestion up to Day 10 of pregnancy induces oxidative stress and changes i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Coll, T.A
Otros Autores: Chaufan, G., Pérez-Tito, L., Ventureira, M.R, Sobarzo, C.M.A, Ríos de Molina, M.D.C, Cebral, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Inc. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 25687caa a22024137a 4500
001 PAPER-17537
003 AR-BaUEN
005 20230518204849.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85031726618 
024 7 |2 cas  |a 3 nitrotyrosine, 3604-79-3; alcohol, 64-17-5; caspase 3, 169592-56-7; catalase, 9001-05-2; glutathione, 70-18-8; nitrite, 14797-65-0; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; Antioxidants; Ethanol 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MREDE 
100 1 |a Coll, T.A. 
245 1 0 |a Oxidative stress and cellular and tissue damage in organogenic outbred mouse embryos after moderate perigestational alcohol intake 
260 |b John Wiley and Sons Inc.  |c 2017 
270 1 0 |m Cebral, E.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y NaturalesArgentina; email: ecebral@hotmail.com 
506 |2 openaire  |e Política editorial 
504 |a Aebi, H., Catalase in vitro (1984) Methods Enzymol, 105, pp. 121-126 
504 |a Agarwal, A., Aponte-Mellado, A., Premkumar, B.J., Shaman, A., Gupta, S., The effects of oxidative stress on female reproduction: A review (2012) Reproductive Biology and Endocrinology, 10, pp. 49-79 
504 |a Allan, A.M., Chynoweth, J., Tyler, L.A., Caldawell, K.K., A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm (2003) Alcoholism: Clinical and Experimental Research, 27, pp. 2009-2016 
504 |a Almeida, V.D., Monterio, M.G., Oliveria, M.G.M., Pomarico, A.C., Bueno, O.F.A., Silva-Fernandes, M.E., Long-lasting effects of chronic ethanol administration on the activity of antioxidant enzymes (1994) Journal of Biochemical and Molecular Toxicology, 9, pp. 141-143 
504 |a Amini, S., Dunstan, R.H., Dunkley, P.R., Murdoch, R.N., Oxidative stress and the fetotoxicity of alcohol consumption during pregnancy (1996) Free Radical Biology & Medicine, 21 (3), pp. 21357-21365 
504 |a Amstad, P., Peskin, A., Shah, G., Mirault, M.E., Moret, R., Zbinden, I., Cerutti, P., The balance between Cu,Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress (1991) Biochemistry, 30 (38), pp. 9305-9313 
504 |a Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples (1985) Methods Enzymol, 113, pp. 548-553 
504 |a Baek, I.J., Yon, J.M., Lee, B.J., Yun, Y.W., Yu, W.J., Hong, J.T., Nam, S.Y., Expression pattern of cytosolic glutathione peroxidase (cGPx) mRNA during mouse embryogenesis (2005) Anatomy and Smbryology (Berlin), 209, pp. 315-321 
504 |a Beauchamp, C., Fridovich, I.J., Superoxide dismutase: Improved assays and an assay applicable to polyacrylamide gels (1971) Analytical Biochemistry, 44 (1), pp. 276-286 
504 |a Beuge, J.A., Aust, S.D., Microsomal lipid peroxidation (1978) Methods Enzymol, 52, pp. 302-310 
504 |a Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., Oxidative stress and antioxidant defense (2012) WAO Journal, 5, pp. 9-19 
504 |a Boehm, S.L., Moore, E.M., Walsh, C.D., Gross, C.D., Cavelli, A.M., Gigante, E., Linsenbardt, D.N., Using drinking in the dark to model prenatal binge-like exposure to ethanol in C57BL/6J mice (2008) Developmental Psychobiology, 50, pp. 566-578 
504 |a Bonthius, D.J., McKim, R.A., Koele, L., Harb, H., Kehrberg, A.H., Mahoney, J., Pantazis, N.J., Severe alcohol-induced neuronal deficits in the hippocampus and neocortex of neonatal mice genetically deficient for neuronal nitric oxide synthase (nNOS) (2006) Journal of Comparative Neurology, 499, pp. 290-305 
504 |a Bosco, C., Diaz, E., Pharmacology and cell metabolism. Placental hypoxia and foetal development versus alcohol exposure in pregnancy (2012) Alcohol Alcoholism, 47 (2), pp. 109-117 
504 |a Brocardo, P.S., Gil-Mohapela, J., Christie, B.R., The role of oxidative stress in fetal alcohol spectrum disorders (2011) Brain Research Reviews, 67, pp. 209-225 
504 |a Cebral, E., Faletti, A.B., Jawerbaum, A., Paz, D.A., Periconceptional alcohol consumption-induced changes in embryonic prostaglandin E levels in mouse organogenesis. Modulation by nitric oxide (2007) Prostaglandins, Leukotrienes & Essential Fatty Acids, 76, pp. 141-151 
504 |a Chen, S.Y., Wilkemeyer, M.F., Sulik, K.K., Charness, M.E., Octanol antagonism of ethanol teratogenesis (2001) FASEB Journal, 15, pp. 1649-1651 
504 |a Chen, S.Y., Dehart, D.B., Sulik, K.K., Protection from ethanol-induced limb malformations by the superoxide dismutase/catalase mimetic, EUK-134 (2004) FASEB Journal, 18 (11), pp. 1234-1236 
504 |a Chu, J., Tong, M., de la Monte, S.M., Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons (2007) Acta Neuropathology, 113, pp. 659-673 
504 |a Church, M.W., Kaltenbach, J.A., Hearing, speech, language, and vestibular disorders in the fetal alcohol syndrome: A literature review (1997) Alcoholism: Clinical and Experimental Research, 21 (3), pp. 495-512 
504 |a Cohen-Kerem, R., Korn, G., Antioxidants and fetal protection against ethanol teratogenicity. I. Review of the experimental data and implications to humans (2003) Neurotoxicology and Teratology, 25 (1), pp. 1-9 
504 |a Coll, T.A., Perez-Tito, L., Sobarzo, C.M.A., Cebral, E., Embryo developmental disruption during organogenesis produced by CF-1 murine periconceptional alcohol consumption (2011) Birth Defects Research Part B, 92, pp. 560-574 
504 |a Covarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E., Castro-Obregón, S., Function of reactive oxygen species during animal development: Passive or active (2008) Developmental Biology, 320, pp. 1-11 
504 |a Cudd, T.A., Animal model system for the study of alcohol teratology (2005) Experimental Biology and Medicine, 230, pp. 389-393 
504 |a Das, S.K., Vasudevan, D.M., Alcohol-induced oxidative stress (2007) Life Science, 81, pp. 177-187 
504 |a Debelak, K.A., Smith, S.M., Avian genetic background modulates the neural crest apoptosis induced by ethanol exposure (2000) Alcoholism: Clinical and Experimental Research, 24, pp. 307-314 
504 |a Dembele, K., Yao, X.H., Chen, L., Nyomba, B.L., Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring (2006) American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 291, pp. R796-R802 
504 |a Dennery, P.A., Effects of oxidative stress on embryonic development (2007) Birth Defects Research Part C Embryo Today, 81, pp. 155-162 
504 |a Dong, J., Sulik, K.K., Chen, S.Y., Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: Implications for the prevention of fetal alcohol spectrum disorders (2008) Antioxidants & Redox Signaling, 10, pp. 2023-2033 
504 |a Dong, J., Sulik, K., Chen, S.Y., The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos (2010) Toxicology Letters, 193, pp. 94-100 
504 |a Dunty, W.C.J., Chen, S.Y., Zucker, R.M., Dehart, D.B., Sulik, K.K., Selective vulnerability of embryonic cell populations to ethanol-induced apoptosis: Implications for alcohol-related birth defects and neurodevelopmental disorder (2001) Alcoholism: Clinical and Experimental Research, 25, pp. 1523-1535 
504 |a Dunty, W.C., Zucker, R.M., Sulik, K.K., Hindbrain and cranial nerve dysmorphogenesis results from acute maternal ethanol administration (2002) Developmental Neuroscience, 24, pp. 328-342 
504 |a Förstermann, U., Nitric oxide and oxidative stress in vascular disease (2010) European Journal of Applied Physiology, 459, pp. 923-939 
504 |a Finkel, T., Holbrook, N.J., Oxidants, oxidative stress and the biology of ageing (2000) Nature, 408, pp. 239-247 
504 |a Franco, R., Sánchez-Olea, R., Reyes-Reyes, E., Panayiotidis, M., Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois (2009) Mutation Research, 674, pp. 3-22 
504 |a Gil-Mohapel, J., Boehme, F., Kainer, L., Christie, B.R., Hippocampal cell loss and neurogenesis after fetal alcohol exposure: Insights from different rodent models (2010) Brain Research Reviews, 64, pp. 283-303 
504 |a Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite and [15N] nitrate in biological fluids (1982) Analytical Biochemistry, 126, pp. 131-138 
504 |a Habig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferase a from rat liver (1976) Archives of Biochemistry and Biophysics, 75 (2), pp. 710-716 
504 |a Halliwell, B., Reactive oxygen species in living systems: Source, biochemistry, and role in human disease (1991) American Journal of Medicine, 91, pp. 14S-22S 
504 |a Halliwell, B., Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life (2006) Plant Physiology, 141, pp. 312-322 
504 |a Hansen, J.M., Harris, C., Redox control of teratogenesis (2013) Reproductive Toxicology, 35, pp. 165-179 
504 |a Heaton, M.B., Paiva, M., Mayer, J., Miller, R., Ethanol-mediated generation of reactive oxygen species in developing rat cerebellum (2002) Neuroscience Letters, 334, pp. 83-86 
504 |a Heaton, M.B., Paiva, M., Madorsky, I., Mayer, J., Moore, D.B., Effects of ethanol on neurotrophic factors, apoptosis-related proteins, endogenous antioxidants, and reactive oxygen species in neonatal striatum: Relationship to periods of vulnerability (2003) Brain Research Developmental Brain Research, 140, pp. 237-252 
504 |a Henderson, G.I., Chen, J.J., Schenker, S., Ethanol, oxidative stress, reactive aldehydes, and the fetus (1999) Frontiers in Bioscience, 4, p. 541 
504 |a Ikonomidou, C., Bittigau, P., Ishimaru, M.J., Wozniak, D.F., Koch, C., Genz, K., Olney, J.W., Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome (2000) Science, 287, pp. 1056-1060 
504 |a Johnson, C.S., Zuckerm, R.M., Hunter, E.S., Sulik, K.K., Perturbation of retinoic acid (RA)-mediated limb development suggests a role for dimished RA signaling in the teratogenesis of ethanol (2007) Birth Defects Research Part A Clinical Molecular Teratology, 79, pp. 631-641 
504 |a Kay, H.H., Grindle, K.M., Magness, R.R., Ethanol exposure induces oxidative stress and impairs nitric oxide availability in the human placental villi: a possible mechanism of toxicity (2000) American Journal of Obstetrics & Gynecology, 182, pp. 682-688 
504 |a Kilburn, B.A., Chiang, P.J., Wang, J., Flentke, G.R., Smith, S.M., Armant, D.R., Rapid induction of apoptosis in gastrulating mouse embryos by ethanol and its prevention by HB-EGF (2006) Alcoholism: Clinical and Experimental Research, 30, pp. 127-134 
504 |a Kleiber, L.B., Diehl, E.J., Laufer, B.I., Mantha, K., Chokroborty-Hoque, A., Alberry, B., Singh, S.M., Long term genomic and epigenomic dysregulation as a consequence of prenatal alcohol exposure: A model of fetal alcohol spectrum disorders (2014) Front Genetics, 5, pp. 1-12 
504 |a Kotch, L.E., Sulik, K.K., Experimental fetal alcohol syndrome: Proposed pathogenic basis for a variety of associated facial and brain anomalies (1992) American Journal of Medical Genetics, 44, pp. 168-176 
504 |a Kotch, L.E., Chen, S.Y., Sulik, K.K., Ethanol-induced teratogenesis: Free radical damage as a possible mechanism (1995) Teratology, 52, pp. 128-136 
504 |a Liu, W.H., Liu, T.C., Yin, M.C., Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury (2008) Food and Chemical Toxicology, 46 (5), pp. 1503-1509 
504 |a Lu, Y., Cederbaum, A.I., CYP2E1 and oxidative liver injury by alcohol (2008) Free Radical Biology & Medicine, 44, pp. 723-738 
504 |a Mancinelli, R., Ceccanti, M., Laviola, G., Fetal alcohol spectrum disorders (FASD): From experimental biology to the search for treatment (2007) Neuroscience Biobehavior Review, 31, pp. 165-167 
504 |a Matés, J.M., Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology (2000) Toxicology, 153, pp. 83-104 
504 |a Mead, E.A., Sarkar, D.K., Fetal alcohol spectrum disorders and their transmission through genetic and epigenetic mechanisms (2014) Frontier Genetics, 5, pp. 1-10 
504 |a Muralidharan, P., Sarmah, S., Zhou, F.C., Marrs, J.A., Fetal alcohol spectrum disorder (FASD) associated neural defects: complex mechanisms and potential therapeutic targets brain (2013) Science, 3 (2), pp. 964-991 
504 |a O'Leary-Moore, S.K., Parnell, S.E., Godin, E.A., Dehart, D.B., Ament, J.J., Khan, A.A., Sulik, K.K., Magnetic resonance microscopy-based analyses of the brains of normal and ethanol-exposed fetal mice (2010) Birth Defects Research Part A Clinical Molecular Teratology, 88 (11), pp. 953-964 
504 |a Ornoy, A., Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy (2007) Reproductive Toxicology, 24, pp. 31-41 
504 |a Perez, M.J., Velasco, E., Monte, M.J., Gonzalez-Buitrago, J.M., Marin, J.J., Maternal ethanol consumption during pregnancy enhances bile acid-induced oxidative stress and apoptosis in fetal rat liver (2006) Toxicology, 225 (2-3), pp. 183-194 
504 |a Plachta, N., Traister, A., Weil, M., Nitric oxide is involved in establishing the balance between cell cycle progression and cell death in the developing neural tube (2003) Experimental Cell Research, 288, pp. 354-362 
504 |a Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., Dhama, K., Oxidative stress, prooxidants, and antioxidants: The interplay (2014) BioMed Research International, 2014, p. 761264. , https://doi.org/10.1155/2014/761264 
504 |a Ramachandran, V., Perez, A., Chen, J., Senthil, D., Schenker, S., Henderson, G.I., In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: A potential role for 4-hydroxynonenal (2001) Alcoholism: Clinical and Experimental Research, 25, pp. 862-871 
504 |a Ramachandran, V., Watts, L.T., Maffi, S.K., Chen, J., Schenker, S., Henderson, G., Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons (2003) Journal of Neuroscience Research, 74, pp. 577-588 
504 |a Rhodes, J.S., Ford, M.M., Yu, C.-H., Brown, L.L., Finn, D.A., Garland, T.J., Crabbe, J.C., Mouse inbred strain differences in ethanol drinking to intoxication (2007) Genes Brain Behavior, 6, pp. 1-18 
504 |a Smith, A.M., Zeve, D.R., Grisel, J.J., Chen, W.J., Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum (2005) Brain Research Developmental Brain Research, 160, pp. 231-238 
504 |a Smith, S.M., Alcohol-induced cell death in the embryo (1997) Alcohol Health Research World, 21, pp. 287-295 
504 |a Sowell, E.R., Thompson, P.M., Mattson, S.N., Tessner, K.D., Jernigan, T.L., Riley, E.P., Toga, A.W., Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure (2002) Cerebral Cortex, 12, pp. 856-865 
504 |a Szabó, C., Multiple pathways of peroxynitrite cytotoxicity (2003) Toxicology Letters, 140-141, pp. 105-113 
504 |a Ufer, C., Wang, C.C., Borchert, A., Heydeck, D., Kuhn, H., Redox control in mammalian embryo development (2010) Antiox Redox Signaling, 13 (8), pp. 833-875 
504 |a Wan, J., Winn, L.M., In utero-initiated cancer: The role of reactive oxygen species (2006) Birth Defects Research Part C Embryo Today, 78, pp. 326-332 
504 |a Wang, Y., Yang, J., Yi, J., Redox sensing by proteins: Oxidative modifications on cysteines and the consequent events (2012) Antioxid Redox Signaling, 16 (7), pp. 649-657 
504 |a Wentzel, P., Eriksson, U.J., Genetic influence on dysmorphogenesis in embryos from different rat strains exposed to ethanol in vivo and in vitro (2008) Alcohol Clinica Experimental Research, 32 (5), pp. 874-887 
504 |a Wentzel, P., Rydberg, U., Eriksson, U.J., Antioxidative treatment diminishes ethanol-induced congenital malformations in the rat (2006) Alcohol Clinical Experimental Research, 30, pp. 1752-1760 
504 |a Wu, D., Cederbaum, A.I., Alcohol, oxidative stress, and free radical damage (2003) Alcohol Research Health, 27, pp. 277-284 
504 |a Yan, B., Ma, Z., Shi, S., Hu, Y., Ma, T., Rong, G., Yang, J., Sulforaphane prevents bleomycin-induced pulmonary fibrosis in mice by inhibiting oxidative stress via nuclear factor erythroid 2-related factor-2 activation (2017) Molecular Medicin Reports, 15, pp. 4005-4014 
504 |a Yon, J.M., Baek, I.J., Lee, S.R., Jin, Y., Kim, M.R., Nahm, S.S., Nam, S.Y., The spatio-temporal expression pattern of cytoplasmic Cu/Zn superoxide dismutase (SOD1) mRNA during mouse embryogenesis (2008) Journal of Molecular Histology, 39, pp. 95-103 
504 |a Young, S.L., Evans, K., Eu, J.P., Nitric oxide modulates branching morphogenesis in fetal rat lung explants (2002) American Journal of Physiology Lung Cell Molecular Physiology, 282, p. 379 
520 3 |a Perigestational alcohol consumption by CF-1 mouse, from before mating up to the period of embryo organogenesis, leads to retarded early embryo development and neural tube defects. Here, we addressed if perigestational alcohol ingestion up to Day 10 of pregnancy induces oxidative stress and changes in macromolecules and organ tissues of early organogenic embryos. Adult CF-1 female mice were administered 10% ethanol in their drinking water for 17 days prior to mating and until Day 10 of gestation, whereas control females were administered ethanol-free water. Our results demonstrated significantly reduced Catalase abundance and activity and increased glutathione content in the embryos of ethanol-treated females. The nitrite level was significantly reduced, but TBARS (thiobarbituric acid reactive substances) content, an index of lipid peroxidation, did not change. Embryos derived from ethanol-treated females also showed higher abundance of 3-nitrotyrosine (3-NT)-containing proteins in all tissues, compared to the control group. Apoptosis was significantly increased in the ectoderm and mesoderm, but not in the heart—although this organ did contain more cleaved Caspase-3-positive cardiomyocytes per area of ventricular myocardium than controls. In sum, moderate perigestational alcohol ingestion up to Day 10 of gestation in mice induces oxidative stress by altering radical nitrogen species and antioxidant enzymatic and non-enzymatic mechanisms in embryos. Further, generalized protein nitration, due to unbalanced nitric oxide levels associated with tissue-specific apoptosis, was detected in embryos, suggesting that oxidative mechanisms may play an important role in the perigestational alcohol-induced malformation of organogenic embryos exposed to ethanol. © 2017 Wiley Periodicals, Inc.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, BID-PICT-2008-2210 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP-11220090100492, PIP-114-200801-00014 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, BID-PICT-2008-2210 
536 |a Detalles de la financiación: European Commission, 11220090100492 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT X187 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, Grant numbers: PIP-11220090100492, PIP-114-200801-00014; FONCYT from the Agencia Nacional de Promoción Científica y Tecnológica, Grant number: BID-PICT-2008-2210; Universidad de Buenos Aires, Grant number: UBACyT X187 
536 |a Detalles de la financiación: The authors acknowledge the CONICET, the Agencia Nacional de Promoción Científica y Tecnológica and Universidad de Buenos Aires, Argentina, for their financial support. The R. de M., MC and C., E thank financial support from CONICET, the FONCYT from the Agencia Nacional de Promoción Científica y Tecnológica and Universidad de Buenos Aires, Argentina. This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP-CONICET, grant numbers: 114-200801-00014, EC; and 11220090100492, R.de M.); Agencia Nacional de Promoción Científ-ica y Tecnológica (grant number BID-PICT-2008-2210); the Universi-dad de Buenos Aires, Argentina (grant number UBACyT X187). 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina 
593 |a CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET), Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Medicina, CONICET- Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a APOPTOSIS 
690 1 0 |a MOUSE EMBRYO ORGANOGENESIS 
690 1 0 |a NITROSYLATION 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PERIGESTATIONAL ALCOHOL 
690 1 0 |a 3 NITROTYROSINE 
690 1 0 |a ALCOHOL 
690 1 0 |a CASPASE 3 
690 1 0 |a CATALASE 
690 1 0 |a DRINKING WATER 
690 1 0 |a GLUTATHIONE 
690 1 0 |a NITRITE 
690 1 0 |a SUPEROXIDE DISMUTASE 
690 1 0 |a THIOBARBITURIC ACID REACTIVE SUBSTANCE 
690 1 0 |a ALCOHOL 
690 1 0 |a ANTIOXIDANT 
690 1 0 |a ADULT 
690 1 0 |a ALCOHOL CONSUMPTION 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a APOPTOSIS 
690 1 0 |a ARTICLE 
690 1 0 |a CALORIC INTAKE 
690 1 0 |a CARDIAC MUSCLE 
690 1 0 |a CELL ADHESION 
690 1 0 |a CELL DAMAGE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ECTODERM 
690 1 0 |a EMBRYO 
690 1 0 |a ENDOCARDIUM 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FEMALE 
690 1 0 |a FETUS DEVELOPMENT 
690 1 0 |a FETUS GROWTH 
690 1 0 |a IMMUNOHISTOCHEMISTRY 
690 1 0 |a IMMUNOREACTIVITY 
690 1 0 |a INGESTION 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a MACROMOLECULE 
690 1 0 |a MESODERM 
690 1 0 |a MOUSE 
690 1 0 |a NEURAL TUBE 
690 1 0 |a NONHUMAN 
690 1 0 |a ORGANOGENESIS 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a TISSUE INJURY 
690 1 0 |a TUNEL ASSAY 
690 1 0 |a WESTERN BLOTTING 
690 1 0 |a ANIMAL 
690 1 0 |a DNA DAMAGE 
690 1 0 |a DRINKING BEHAVIOR 
690 1 0 |a DRUG EFFECT 
690 1 0 |a EMBRYO DEVELOPMENT 
690 1 0 |a GENETICS 
690 1 0 |a MAMMALIAN EMBRYO 
690 1 0 |a METABOLISM 
690 1 0 |a OUTBRED STRAIN 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PATHOLOGY 
690 1 0 |a PREGNANCY 
690 1 0 |a PRENATAL EXPOSURE 
690 1 0 |a ALCOHOL DRINKING 
690 1 0 |a ANIMALS 
690 1 0 |a ANIMALS, OUTBRED STRAINS 
690 1 0 |a ANTIOXIDANTS 
690 1 0 |a APOPTOSIS 
690 1 0 |a DNA DAMAGE 
690 1 0 |a EMBRYO, MAMMALIAN 
690 1 0 |a EMBRYONIC DEVELOPMENT 
690 1 0 |a ETHANOL 
690 1 0 |a FEMALE 
690 1 0 |a MICE 
690 1 0 |a ORGANOGENESIS 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PREGNANCY 
690 1 0 |a PRENATAL EXPOSURE DELAYED EFFECTS 
700 1 |a Chaufan, G. 
700 1 |a Pérez-Tito, L. 
700 1 |a Ventureira, M.R. 
700 1 |a Sobarzo, C.M.A. 
700 1 |a Ríos de Molina, M.D.C. 
700 1 |a Cebral, E. 
773 0 |d John Wiley and Sons Inc., 2017  |g v. 84  |h pp. 1086-1099  |k n. 10  |p Mol. Reprod. Dev.  |x 1040452X  |t Molecular Reproduction and Development 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031726618&doi=10.1002%2fmrd.22865&partnerID=40&md5=e174aa526c6991ffb992f3b77b149ef1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/mrd.22865  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1040452X_v84_n10_p1086_Coll  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1040452X_v84_n10_p1086_Coll  |y Registro en la Biblioteca Digital 
961 |a paper_1040452X_v84_n10_p1086_Coll  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78490