Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives

Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sutka, M.
Otros Autores: Amodeo, G., Ozu, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2017
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 76189caa a22042137a 4500
001 PAPER-17536
003 AR-BaUEN
005 20230607131909.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85032180803 
024 7 |2 cas  |a aquaporin, 215587-75-0; aquaporin 1, 146410-94-8, 149348-86-7; aquaporin 2, 231937-18-1; aquaporin 4, 175960-54-0; arginine, 1119-34-2, 15595-35-4, 7004-12-8, 74-79-3; carbon dioxide, 124-38-9, 58561-67-4; epidermal growth factor, 59459-45-9, 62229-50-9; hydrogen peroxide, 7722-84-1; hydroxyl radical, 3352-57-6; superoxide, 11062-77-4; vasopressin, 11000-17-2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Sutka, M. 
245 1 0 |a Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives 
260 |b Springer Verlag  |c 2017 
270 1 0 |m Amodeo, G.; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y TécnicasArgentina; email: amodeo@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alleva, K., Niemietz, C.M., Sutka, M., Maurel, C., Parisi, M., Tyerman, S.D., Amodeo, G., Plasma membrane of Beta Vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations (2006) J Exp Bot, 57, pp. 609-621. , COI: 1:CAS:528:DC%2BD28XovVCrtw%3D%3D, PID: 16397000 
504 |a Almasalmeh, A., Krenc, D., Wu, B., Beitz, E., Structural determinants of the hydrogen peroxide permeability of aquaporins (2014) FEBS J, 281, pp. 647-656. , https://doi.org/10.1111/febs.12653 
504 |a Arcienega, I.I., Brunet, J.F., Bloch, J., Badaut, J., Cell locations for AQP1, AQP4 and 9 in the non-human primate brain (2010) Neuroscience, 167, pp. 1103-1114. , COI: 1:CAS:528:DC%2BC3cXlsFOhsrw%3D, PID: 20226845 
504 |a Barzana, G., Aroca, R., Bienert, G.P., Chaumont, F., Ruiz-Lozano, J.M., New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance (2014) Mol Plant-Microbe Interact, 27, pp. 349-363. , COI: 1:CAS:528:DC%2BC2cXkvV2gu70%3D, PID: 24593244 
504 |a Bellati, J., Alleva, K., Soto, G., Vitali, V., Jozefkowicz, C., Amodeo, G., Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression (2010) Plant Mol Biol, 74, pp. 105-118. , https://doi.org/10.1007/s11103-010-9658-8 
504 |a Berny, M.C., Gilis, D., Rooman, M., Chaumont, F., Single mutations in the transmembrane domains of maize plasma membrane Aquaporins affect the activity of monomers within a Heterotetramer (2016) Mol Plant, 9, pp. 986-1003. , https://doi.org/10.1016/j.molp.2016.04.006 
504 |a Berry, V., Francis, P., Kaushal, S., Moore, A., Bhattacharya, S., Missense mutations in MIP underlie autosomal dominant ‘polymorphic’ and lamellar cataracts linked to 12q (2000) Nat Genet, 25, pp. 15-17. , COI: 1:CAS:528:DC%2BD3cXjtFSlsbo%3D, PID: 10802646 
504 |a Besse, M., Knipfer, T., Miller, A.J., Verdeil, J.L., Jahn, T.P., Fricke, W., Developmental pattern of aquaporin expression in barley (Hordeum vulgare L.) leaves (2011) J Exp Bot, 62, pp. 4127-4142. , COI: 1:CAS:528:DC%2BC3MXhtVeit7jI, PID: 21737414 
504 |a Besserer, A., Burnotte, E., Bienert, G.P., Chevalier, A.S., Errachid, A., Grefen, C., Blatt, M.R., Chaumont, F., Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121 (2012) Plant Cell, 24, pp. 3463-3481. , COI: 1:CAS:528:DC%2BC38XhsFeku7bI, PID: 22942383 
504 |a Bienert, G.P., Chaumont, F., Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide (2014) Biochim Biophys Acta, 1840, pp. 1596-1604. , https://doi.org/10.1016/j.bbagen.2013.09.017 
504 |a Bienert, G.P., Schüssler, M.D., Jahn, T.P., Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out (2008) Trends Biochem Sci, 33, pp. 20-26. , COI: 1:CAS:528:DC%2BD1cXlvV2jsA%3D%3D, PID: 18068370 
504 |a Bienert, G.P., Bienert, M.D., Jahn, T.P., Boutry, M., Chaumont, F., Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates (2011) Plant J, 66, pp. 306-317. , COI: 1:CAS:528:DC%2BC3MXlvFKktLg%3D, PID: 21241387 
504 |a Bienert, G.P., Cavez, D., Besserer, A., Berny, M.C., Gilis, D., Rooman, M., Chaumont, F., A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers (2012) Biochem J, 445, pp. 101-111. , COI: 1:CAS:528:DC%2BC38XovVGnsLY%3D, PID: 22506965 
504 |a Bloch, O., Manley, G.T., Verkman, A.S., Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4 deficient mice (2006) J Cereb Blood Flow Metab, 26, pp. 1527-1537. , COI: 1:CAS:528:DC%2BD2sXktVSksg%3D%3D, PID: 16552421 
504 |a Bogacki, P., Peck, D.M., Nair, R.M., Howie, J., Oldach, K.H., Genetic analysis of tolerance to boron toxicity in the legume Medicago Truncatula (2013) BMC Plant Biol, 13, p. 54. , https://doi.org/10.1186/1471-2229-13-54 
504 |a Booth, I.R., Blount, P., The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves (2012) J Bacteriol, 194, pp. 4802-4809. , COI: 1:CAS:528:DC%2BC38XhtlCht7fM, PID: 22685280 
504 |a Briones, R., Aponte-Santamaría, C., de Groot, B.L., Localization and ordering of lipids around aquaporin-0: protein and lipid mobility effects (2017) Front Physiol, 8, p. 124. , https://doi.org/10.3389/fphys.2017.00124 
504 |a Butler, T.L., Au, C.G., Yang, B., Egan, J.R., Tan, Y.M., Cardiac aquaporin expression in humans, rats, and mice (2006) Am J Physiol Heart Circ Physiol, 291, pp. H705-H713. , COI: 1:CAS:528:DC%2BD28XoslWrtLk%3D, PID: 16582023 
504 |a Calamita, G., Aquaporins: highways for cells to recycle water with the outside world (2005) Biol Cell, 97, pp. 351-353. , COI: 1:CAS:528:DC%2BD2MXks1GltL0%3D, PID: 15901243 
504 |a Carbrey, J.M., Gorelick-Feldman, D.A., Kozono, D., Praetorius, J., Nielsen, S., Agre, P., Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver (2003) Proc Natl Acad Sci U S A, 100, pp. 2945-2950. , COI: 1:CAS:528:DC%2BD3sXitVaiurc%3D, PID: 12594337 
504 |a Casado-Vela, J., Muries, B., Carvajal, M., Iloro, I., Elortza, F., Martinez-Ballesta, M.C., Analysis of root plasma membrane aquaporins from Brassica Oleracea: post-translational modifications, de novo sequencing and detection of isoforms by high resolution mass spectrometry (2010) J Proteome Res, 9, pp. 3479-3494. , COI: 1:CAS:528:DC%2BC3cXmslSjur4%3D, PID: 20462273 
504 |a Chauvigné, F., Boj, M., Finn, R.N., Cerdà, J., Mitochondrial aquaporin-8-mediated hydrogen peroxide transport is essential for teleost spermatozoon motility (2015) Sci Rep, 5 (7789). , https://doi.org/10.1038/srep07789 
504 |a Chen, Q., Duan, E.K., Aquaporins in sperm osmoadaptation: an emerging role for volume regulation (2011) Acta Pharmacol Sin, 32, pp. 721-724. , COI: 1:CAS:528:DC%2BC3MXmvFyju7k%3D, PID: 21552294 
504 |a Cheng, Y.S., Tang, Y.Q., Dai, D.Z., Dai, Y., AQP4 knockout mice manifest abnormal expressions of calcium handling proteins possibly due to exacerbating pro-inflammatory factors in the heart (2012) Biochem Pharmacol, 83, pp. 97-105. , COI: 1:CAS:528:DC%2BC3MXhsFeisb7O, PID: 22020118 
504 |a Chepelinsky, A.B., Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts (2009) Handb Exp Pharmacol, 190, pp. 265-297. , https://doi.org/10.1007/978-3-540-79885-9_14 
504 |a Chevalier, A.S., Chaumont, F., Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals (2015) Plant Cell Physiol, 56, pp. 819-829. , https://doi.org/10.1093/pcp/pcu203 
504 |a Cho, G., Bragiel, A.M., Wang, D., Pieczonka, T.D., Skowronski, M.T., Shono, M., Nielsen, S., Ishikawa, Y., Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane (2015) Biochim Biophys Acta, 1850, pp. 784-793. , https://doi.org/10.1016/j.bbagen.2015.01.009 
504 |a Conner, A.C., Brown, J.E., Bill, R.M., Membrane trafficking of aquaporin 1 is mediated by protein kinase C via microtubules and regulated by tonicity (2010) Biochemistry, 49, pp. 821-823. , COI: 1:CAS:528:DC%2BC3cXlvFWntw%3D%3D, PID: 20063900 
504 |a Conner, M.T., Conner, A.C., Bland, C.E., Taylor, L.H.J., Brown, J.E.P., Parri, H.R., Bill, R.M., Rapid aquaporin translocation regulates cellular water flow - mechanism of hypotonicity-induced subcellular localization of aquaporin 1 water channel (2012) J Biol Chem, 287 (14), pp. 11516-11525. , https://doi.org/10.1074/jbc.M111.329219 
504 |a Conner, A.C., Bill, R.M., Conner, M.T., An emerging consensus on aquaporin translocation as a regulatory mechanism (2013) Mol Membr Biol, 30 (1), pp. 101-112. , https://doi.org/10.3109/09687688.2012.743194 
504 |a Cordeiro, R.M., Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins (2015) Biochim Biophys Acta, 1850, pp. 1786-1794. , https://doi.org/10.1016/j.bbagen.2015.05.007 
504 |a Danielson, J.Å., Johanson, U., Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens (2008) BMC Plant Biol, 8, p. 45. , PID: 18430224 
504 |a Day, R.E., Kitchen, P., Owen, D.S., Bland, C., Marshall, L., Conner, A.C., Bill, R.M., Conner, M.T., Human aquaporins: regulators of transcellular water flow (2014) Biochim Biophys Acta, 1840, pp. 1492-1506. , COI: 1:CAS:528:DC%2BC3sXhvVKis7fO, PID: 24090884 
504 |a Deen, P.M., Verdijk, M.A., Knoers, N.V., Wieringa, B., Monnens, L.A., van Os, C.H., van Oost, B.A., Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine (1994) Science, 264, pp. 92-95. , COI: 1:CAS:528:DyaK2cXktVWntLY%3D, PID: 8140421 
504 |a De Groot, B.L., Grubmüller, H., Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF (2001) Science, 294, pp. 2353-2357. , https://doi.org/10.1126/science.1062459 
504 |a Ding, F.B., Yan, Y.M., Huang, J.B., Mei, J., Zhu, J.Q., The involvement of AQP1 in heart oedema induced by global myocardial ischemia (2013) Cell Biochem Funct, 31, pp. 60-64. , COI: 1:CAS:528:DC%2BC3sXls1Crtw%3D%3D, PID: 22865611 
504 |a Dordas, C., Brown, P.H., Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo) (2001) Plant Soil, 235, pp. 95-103. , COI: 1:CAS:528:DC%2BD3MXnslGksrY%3D 
504 |a Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., Sul, H.S., Regulation of lipolysis in adipocytes (2007) Annu Rev Nutr, 27, pp. 79-101. , COI: 1:CAS:528:DC%2BD2sXhsVWisLzJ, PID: 17313320 
504 |a Effros, R.M., Darin, C., Jacobs, E.R., Rogers, R.A., Krenz, G., Schneeberger, E.E., Water transport and the distribution of aquaporin-1 in pulmonary air spaces (1997) J Appl Physiol, 83, pp. 1002-1016. , COI: 1:CAS:528:DyaK2sXmt1Ckur4%3D, PID: 9292489 
504 |a Endo, M., Jain, R.K., Witwer, B., Brown, D., Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas (1999) Microvasc Res, 58, pp. 89-98. , COI: 1:CAS:528:DyaK1MXlt1ygsrk%3D, PID: 10458924 
504 |a Finn, R.N., Cerdà, J., Evolution and functional diversity of Aquaporins (2015) Biol Bull, 229, pp. 6-23. , https://doi.org/10.1086/BBLv229n1p6 
504 |a Finn, R.N., Chauvigné, F., Hlidberg, J.B., Cutler, C.P., Cerdà, J., The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation (2014) PLoS ONE, 9. , https://doi.org/10.1371/journal.pone.0113686, e113686 
504 |a Finn, R.N., Chauvigné, F., Stavang, J.A., Belles, X., Cerdà, K., Insect glycerol transporters evolved by functional co-option and gene replacement (2015) Nature Com, 6, pp. 7814-7878. , https://doi.org/10.1038/ncomms8814 
504 |a Fischbarg, J., Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins (2010) Physiol Rev, 90, pp. 1271-1290. , https://doi.org/10.1152/physrev.00025.2009 
504 |a Fischer, G., Kosinska-Eriksson, U., Aponte-Santamaría, C., Palmgren, M., Geijer, C., Hedfalk, K., Hohmann, S., Lindkvist-Petersson, K., Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism (2009) PLoS Biol, 7. , https://doi.org/10.1371/journal.pbio.1000130, e1000130 
504 |a Fitzpatrick, K.L., Reid, R.J., The involvement of aquaglyceroporins in transport of boron in barley roots (2009) Plant Cell Environ, 32, pp. 1357-1365. , COI: 1:CAS:528:DC%2BD1MXhtlWhs7zN, PID: 19552667 
504 |a Fleurat-Lessard, P., Frangne, N., Maeshima, M., Ratajczak, R., Bonnemain, J.L., Martinoia, E., Increased expression of vacuolar aquaporin and H + -ATPase related to motor cell function in Mimosa pudica L (1997) Plant Physiol, 114, pp. 827-834. , COI: 1:CAS:528:DyaK2sXkslOqs7Y%3D, PID: 12223745 
504 |a Fraysse, L., Wells, B., McCann, M.C., Kjellbom, P., Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells (2005) Biol Cell, 97, pp. 519-534. , COI: 1:CAS:528:DC%2BD2MXovV2mtbs%3D, PID: 15898953 
504 |a Frick, A., Järvå, M., Törnroth-Horsefield, S., Structural basis for pH gating of plant aquaporins (2013) FEBS Lett, 587, pp. 989-993. , https://doi.org/10.1016/j.febslet.2013.02.038 
504 |a Frick, A., Eriksson, U.K., de Mattia, F., Oberg, F., Hedfalk, K., Neutze, R., de Grip, W.J., Törnroth-Horsefield, S., X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking (2014) Proc Natl Acad Sci U S A, 111, pp. 6305-6310. , https://doi.org/10.1073/pnas.1321406111 
504 |a Fu, D., Libson, A., Miercke, L.J., Weitzman, C., Nollert, P., Krucinski, J., Stroud, R.M., Structure of a glycerol-conducting channel and the basis for its selectivity (2000) Science, 290, pp. 481-486. , COI: 1:CAS:528:DC%2BD3cXnsFKjtb4%3D, PID: 11039922 
504 |a Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., Sasaki, S., Cloning and expression of apical membrane water channel of rat kidney collecting tubule (1993) Nature, 361, pp. 549-552. , COI: 1:CAS:528:DyaK3sXisFSjsrk%3D, PID: 8429910 
504 |a Garcia, F., Kierbel, A., Larocca, M.C., Gradilone, S.A., Splinter, P., Larusso, N.F., Marinelli, R.A., The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP (2001) J Biol Chem, 276, pp. 12147-12152. , COI: 1:CAS:528:DC%2BD3MXjtFyltLs%3D, PID: 11278499 
504 |a Gattolin, S., Sorieul, M., Hunter, P.R., Khonsari, R.H., Frigerio, L., In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots (2009) BMC Plant Biol, 9, p. 133. , PID: 19922653 
504 |a Gerbeau, P., Amodeo, G., Henzler, T., Santoni, V., Ripoche, P., Maurel, C., The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH (2002) Plant J, 30, pp. 71-81. , COI: 1:CAS:528:DC%2BD38XjvFGgsrw%3D, PID: 11967094 
504 |a Geyer, R.R., Musa-Aziz, R., Qin, B.W.F., Relative CO 2 /NH 3 selectivities of mammalian aquaporins 0–9 (2013) Am J Physiol Cell Physiol, 304, pp. C985-C994. , PID: 23485707 
504 |a Gladka, M., El Azzouzi, H., De Windt, L.J., da Costa Martins, P.A., Aquaporin 7: the glycerol aquaeductus in the heart (2009) Cardiovasc Res, 83, pp. 3-4. , https://doi.org/10.1093/cvr/cvp147 
504 |a Goldman, R.P., Jozefkowicz, C., Canessa Fortuna, A., Sutka, M., Alleva, K., Ozu, M., (2017) Tonoplast (BvTIP1;2) and plasma membrane (BvPIP2;1) aquaporins show different mechanosensitive properties, , https://doi.org/10.1002/1873-3468.12671, FEBS Lett 
504 |a Gonen, T., Sliz, P., Kistler, J., Cheng, Y., Walz, T., Aquaporin-0 membrane junctions reveal the structure of a closed water pore (2004) Nature, 429, pp. 193-197. , https://doi.org/10.1038/nature02503 
504 |a Gonen, T., Cheng, Y., Sliz, P., Hiroaki, Y., Fujiyoshi, Y., Harrison, S.C., Walz, T., Lipid-protein interactions in double-layered two-dimensional AQP0 crystals (2005) Nature, 438, pp. 633-638. , COI: 1:CAS:528:DC%2BD2MXht1Gqs7zI, PID: 16319884 
504 |a Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., Maurel, C., Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation (2015) Plant Cell, 27, pp. 1945-1954. , COI: 1:CAS:528:DC%2BC2MXhsVOhtr3M, PID: 26163575 
504 |a de Groot, B.L., Engel, A., Grubmüller, H., A refined structure of human aquaporin 1 (2001) FEBS Lett, 504, pp. 206-211. , https://doi.org/10.1016/S0014-5793(01)02743-0 
504 |a Guenther, J.F., Chanmanivone, N., Galetovic, M.P., Wallace, I.S., Cobb, J.A., Roberts, D.M., Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals (2003) Plant Cell, 15, pp. 981-991. , COI: 1:CAS:528:DC%2BD3sXjtFSlsbg%3D, PID: 12671092 
504 |a Gupta, A.B., Sankararamakrishnan, R., Genome-wide analysis of major intrinsic proteins in the tree plant Populus Trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective (2009) BMC Plant Biol, 9, p. 134. , PID: 19930558 
504 |a Hachez, C., Moshelion, M., Zelazny, E., Cavez, D., Chaumont, F., Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers (2006) Plant Mol Biol, 62, pp. 305-323. , COI: 1:CAS:528:DC%2BD28XptlSmsbc%3D, PID: 16845476 
504 |a Hachez, C., Heinen, R.B., Draye, X., Chaumont, F., The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation (2008) Plant Mol Biol, 68, pp. 337-353 
504 |a Hachez, C., Besserer, A., Chevalier, A.S., Chaumont, F., Insights into plant plasma membrane aquaporin trafficking (2013) Trends Plant Sci, 18 (6), pp. 344-p352. , https://doi.org/10.1016/j.tplants.2012.12.003 
504 |a Hachez, C., Laloux, T., Reinhardt, H., Cavez, D., Degand, H., Grefen, C., De Rycke, R., Russinova, E., Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability (2014) Plant Cell, 26, pp. 3132-3147. , COI: 1:CAS:528:DC%2BC2cXhsFaks7rP, PID: 25082856 
504 |a Haj-Yasein, N.N., Vindedal, G.F., Eilert-Olsen, M., Gundersen, G.A., Skare, O., Laake, P., Klungland, A., Nagelhus, E.A., Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet (2011) Proc Natl Acad Sci U S A, 108, pp. 17815-17820. , COI: 1:CAS:528:DC%2BC3MXhsVGksLfK, PID: 21990350 
504 |a Han, Z., Patil, R.V., Protein kinase A-dependent phosphorylation of aquaporin-1 (2000) Biochem Biophys Res Commun, 273, pp. 328-332. , COI: 1:CAS:528:DC%2BD3cXkt1KmsLg%3D, PID: 10873606 
504 |a Hara-Chikuma, M., Sohara, E., Rai, T., Ikawa, M., Okabe, M., Sasaki, S., Uchida, S., Verkman, A.S., Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation (2005) J Biol Chem, 280, pp. 15493-15496. , COI: 1:CAS:528:DC%2BD2MXjtlejuro%3D, PID: 15746100 
504 |a Harries, W.E., Akhavan, D., Miercke, L.J., Khademi, S., Stroud, R.M., The channel architecture of aquaporin 0 at a 2.2-a resolution (2004) Proc Natl Acad Sci U S A, 101, pp. 14045-14050. , COI: 1:CAS:528:DC%2BD2cXosVyls74%3D, PID: 15377788 
504 |a He, F., Sun, Y.E., Glial cells more than support cells? (2007) Int J Biochem Cell Biol, 39, pp. 661-665. , COI: 1:CAS:528:DC%2BD2sXivVShs7g%3D, PID: 17141551 
504 |a Heckwolf, M., Pater, D., Hanson, D.T., Kaldenhoff, R., The Arabidopsis Thaliana aquaporin AtPIP1;2 is a physiologically relevant CO 2 transport facilitator (2011) Plant J, 67, pp. 795-804. , COI: 1:CAS:528:DC%2BC3MXhtFOhsbvM, PID: 21564354 
504 |a Heinen, R.B., Bienert, G.P., Cohen, D., Chevalier, A.S., Uehlein, N., Hachez, C., Chaumont, F., Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays (2014) Plant Mol Biol, 86, pp. 335-350. , COI: 1:CAS:528:DC%2BC2cXht1Gntb7L, PID: 25082269 
504 |a Herrera, M., Garvin, J.L., Novel role of AQP-1 in NO- dependent vasorelaxation (2007) Am J Physiol Renal Physiol, 292, pp. F1443-F1451. , COI: 1:CAS:528:DC%2BD2sXlslShurg%3D, PID: 17229677 
504 |a Herrera, M., Hong, N.J., Garvin, J.L., Aquaporin-1 transports NO across cell membranes (2006) Hypertension, 48 (1), pp. 157-164. , COI: 1:CAS:528:DC%2BD28XlvVSmtr4%3D, PID: 16682607 
504 |a Hibuse, T., Maeda, N., Nakatsuji, H., Tochino, Y., Fujita, K., Kihara, S., Funahashi, T., Shimomura, I., The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator (2009) Cardiovasc Res, 83, pp. 34-41. , https://doi.org/10.1093/cvr/cvp095 
504 |a Hill, A.E., Shachar-Hill, B., A new approach to epithelial isotonic fluid transport: an osmosensor feedback model (2006) J Membr Biol, 210, pp. 77-90. , COI: 1:CAS:528:DC%2BD28XnslSit7w%3D, PID: 16868677 
504 |a Hill, A.E., Shachar-Hill, Y., Are Aquaporins the missing transmembrane Osmosensors? (2015) J Membr Biol, 248, pp. 753-765. , https://doi.org/10.1007/s00232-015-9790-0 
504 |a Hill, A.E., Shachar-Hill, B., Shachar-Hill, Y., What are aquaporins for? (2004) J Membr Biol, 197, pp. 1-32. , COI: 1:CAS:528:DC%2BD2cXhvF2mt7o%3D, PID: 15014915 
504 |a Hill, A.E., Shachar-Hill, B., Skepper, J.N., Powell, J., Shachar-Hill, Y., An osmotic model of the growing pollen tube (2012) PLoS ONE, 7 (5). , https://doi.org/10.1371/journal.pone.0036585, e36585 
504 |a Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Fujiyoshi, Y., Implications of the aquaporin-4 structure on array formation and cell adhesion (2006) J Mol Biol, 355, pp. 628-639. , COI: 1:CAS:528:DC%2BD2MXhtlCrt7%2FL, PID: 16325200 
504 |a Hite, R.K., Li, Z., Walz, T., Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals (2010) EMBO J, 29, pp. 1652-1658. , https://doi.org/10.1038/emboj.2010.68 
504 |a Ho, J.D., Yeh, R., Sandstrom, A., Chorny, I., Harries, W.E., Robbins, R.A., Miercke, L.J., Stroud, R.M., Crystal structure of human aquaporin 4 at 1.8 a and its mechanism of conductance (2009) Proc Natl Acad Sci U S A, 106, pp. 7437-7442. , https://doi.org/10.1073/pnas.0902725106 
504 |a Horsefield, R., Nordén, K., Fellert, M., Backmark, A., Törnroth-Horsefield, S., Terwisscha van Scheltinga, A.C., Kvassman, J., Neutze, R., High-resolution x-ray structure of human aquaporin 5 (2008) Proc Natl Acad Sci U S A, 105, pp. 13327-13332. , https://doi.org/10.1073/pnas.0801466105 
504 |a Hu, J., Verkman, A.S., Increased migration and metastatic potential of tumor cells expressing aquaporin water channels (2006) FASEB J, 20, pp. 1892-1894. , COI: 1:CAS:528:DC%2BD28XptlOmsb4%3D, PID: 16818469 
504 |a Huang, Y., Li, W., Lu, W., Xiong, C., Yang, Y., Yan, H., Cao, P., Cloning and in vitro characterization of a Schistosoma Japonicum aquaglyceroporin that functions in osmoregulation (2016) Sci Rep, 6 (35030). , https://doi.org/10.1038/srep35030 
504 |a Hub, J.S., de Groot, B.L., Does CO 2 permeate through aquaporin-1? (2006) Biophys J, 91, pp. 842-848. , COI: 1:CAS:528:DC%2BD28XnsFOjtrw%3D, PID: 16698771 
504 |a Hurley, P.T., Ferguson, C.J., Kwon, T.H., Andersen, M.L., Norman, A.G., Steward, M.C., Nielsen, S., Case, R.M., Expression and immunolocalization of aquaporin water channels in rat exocrine pancreas (2001) Am J Physiol Gastrointest Liver Physiol, 280, pp. G701-G709. , COI: 1:CAS:528:DC%2BD3MXjtVyqur8%3D, PID: 11254497 
504 |a Hwang, J.H., Ellingson, S.R., Roberts, D.M., Ammonia permeability of the soybean nodulin 26 channel (2010) FEBS Lett, 584, pp. 4339-4343. , COI: 1:CAS:528:DC%2BC3cXhtlSmurbE, PID: 20875821 
504 |a Ishibashi, K., Sasaki, S., Fushimi, K., Uchida, S., Kuwahara, M., Saito, H., Furukawa, T., Gojobori, T., Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells (1994) Proc Natl Acad Sci U S A, 91, pp. 6269-6273. , COI: 1:CAS:528:DyaK2cXmslegur0%3D, PID: 7517548 
504 |a Ishibashi, K., Kuwahara, M., Gu, Y., Kageyama, Y., Tohsaka, A., Suzuki, F., Marumo, F., Sasaki, S., Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea (1997) J Biol Chem, 272, pp. 20782-20786. , COI: 1:CAS:528:DyaK2sXlsFKgsLw%3D, PID: 9252401 
504 |a Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Guclu, J., Vinh, J., Heyes, J., Maurel, C., Role of a single aquaporin isoform in root water uptake (2003) Plant Cell, 15, pp. 509-522. , COI: 1:CAS:528:DC%2BD3sXhtlOmur8%3D, PID: 12566588, 2003 
504 |a Jiang, J., Daniels, B.V., Fu, D., Crystal structure of AqpZ tetramer reveals two distinct Arg-189 conformations associated with water permeation through the narrowest constriction of the water-conducting channel (2006) J Biol Chem, 281, pp. 454-460. , COI: 1:CAS:528:DC%2BD28Xht1eqsQ%3D%3D, PID: 16239219 
504 |a Jin, B.J., Rossi, A., Verkman, A.S., Model of aquaporin-4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1-M23 isoforms (2011) Biophys J, 100, pp. 2936-2945. , https://doi.org/10.1016/j.bpj.2011.05.012 
504 |a Johanson, U., Karlsson, M., Gustavsson, S., Sjovall, S., Fraysse, L., Weig, A.R., Kjellbom, P., The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants (2001) Plant Physiol, 126, pp. 1358-1369. , COI: 1:CAS:528:DC%2BD3MXlvFOjtbk%3D, PID: 11500536 
504 |a Johansson, I., Karlsson, M., Shukla, V.K., Chrispeels, M.J., Larsson, C., Kjellbom, P., Water transport activity of the plasma membrane aquaporin PM28A is regulated byphosphorylation (1998) Plant Cell, 10, pp. 451-459. , COI: 1:CAS:528:DyaK1cXitFGms7k%3D, PID: 9501117 
504 |a Johnson, K.D., Herman, E.M., Chrispeels, M.J., An abundant, highly conserved tonoplast protein in seeds (1989) Plant Physiol, 91, pp. 1006-1013. , COI: 1:CAS:528:DyaK3cXjtleksg%3D%3D, PID: 16667102 
504 |a Johnson, K.D., Höfte, H., Chrispeels, M.J., An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GIpF) (1990) Plant Cell, 2, pp. 525-532. , COI: 1:CAS:528:DyaK3MXitlCi, PID: 2152174 
504 |a Jozefkowicz, C., Rosi, P., Sigaut, L., Soto, G., Pietrasanta, L.I., Amodeo, G., Alleva, K., Loop a is critical for the functional interaction of two Beta Vulgaris PIP Aquaporins (2013) PLoS ONE, 8 (3). , https://doi.org/10.1371/journal.pone.0057993, e57993 
504 |a Jozefkowicz, C., Sigaut, L., Scochera, F., Soto, G., Ayub, N., Pietrasanta, L.I., Amodeo, G., Alleva, K., PIP water transport and its pH dependence are regulated by tetramer stoichiometry (2016) Biophys J, 110, pp. 1312-1321. , COI: 1:CAS:528:DC%2BC28XislaqsLY%3D, PID: 27028641 
504 |a Kamiya, T., Tanaka, M., Mitani, N., Ma, J.F., Maeshima, M., Fujiwara, T., NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis Thaliana (2009) J Biol Chem, 284, pp. 2114-2120. , COI: 1:CAS:528:DC%2BD1MXlvFartQ%3D%3D, PID: 19029297 
504 |a Karabasil, M.R., Hasegawa, T., Azlina, A., Purwanti, N., Purevjav, J., Yao, C., Trafficking of GFP-AQP5 chimeric proteins conferred with unphosphorylated amino acids at their PKA- target motif ((152)SRRTS) in MDCK-II cells (2009) J Med Investig, 56, pp. 55-63 
504 |a Kim, D.Y., Scalf, M., Smith, L.M., Vierstra, R.D., Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis (2013) Plant Cell, 25, pp. 1523-1540. , COI: 1:CAS:528:DC%2BC3sXhtFaksLzJ, PID: 23667124 
504 |a Kirscht, A., Kaptan, S.S., Bienert, G.P., Chaumont, F., Nissen, P., de Groot, B.L., Kjellbom, P., Johanson, U., Crystal structure of an ammonia-permeable aquaporin (2016) PLoS Biol, 14. , https://doi.org/10.1371/journal.pbio.1002411, e1002411 
504 |a Kitchen, P., Day, R.E., Salman, M.M., Conner, M.T., Bill, R.M., Conner, A.C., Beyond water homeostasis: diverse functional roles of mammalian aquaporins (2015) Biochim Biophys Acta, 1850, pp. 2410-2421. , https://doi.org/10.1016/j.bbagen.2015.08.023 
504 |a Kitchen, P., Day, R.E., Taylor, L.H., Salman, M.M., Bill, R.M., Conner, M.T., Conner, A.C., Identification and molecular mechanisms of the rapid tonicity-induced Relocalization of the aquaporin 4 channel (2015) J Biol Chem, 290, pp. 16873-16881. , https://doi.org/10.1074/jbc.M115.646034 
504 |a Kitchen, P., Öberg, F., Sjöhamn, J., Hedfalk, K., Bill, R.M., Conner, A.C., Conner, M.T., Törnroth-Horsefield, S., Plasma membrane abundance of human aquaporin 5 is dynamically regulated by multiple pathways (2015) PLoS ONE, 10 (11). , https://doi.org/10.1371/journal.pone.0143027, c, e0143027 
504 |a Kitchen, P., Conner, M.T., Bill, R.M., Conner, A.C., Structural determinants of oligomerization of the aquaporin-4 channel (2016) J Biol Chem, 291, pp. 6858-6871. , https://doi.org/10.1074/jbc.M115.694729 
504 |a Knipfer, T., Fricke, W., Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.) (2011) J Exp Bot, 62, pp. 717-733. , COI: 1:CAS:528:DC%2BC3cXhsFyrsb%2FJ, PID: 20974734 
504 |a Kosinska Eriksson, U., Fischer, G., Friemann, R., Enkavi, G., Tajkhorshid, E., Neutze, R., Subangstrom resolution X-ray structure details aquaporin-water interactions (2013) Science, 340, pp. 1139-1346. , https://doi.org/10.1126/science.1234306 
504 |a Kosugi-Tanaka, C., Li, X., Yao, C., Akamatsu, T., Kanamori, N., Hosoi, K., Protein kinase A-regulated membrane trafficking of a green fluorescent protein-aquaporin 5 chimera in MDCK cells (2006) Biochim Biophys Acta, 1763, pp. 337-344. , COI: 1:CAS:528:DC%2BD28XksFOqtbw%3D, PID: 16603260 
504 |a Kreida, S., Törnroth-Horsefield, S., Structural insights into aquaporin selectivity and regulation (2015) Curr Opin Struct Biol, 33, pp. 126-134. , https://doi.org/10.1016/j.sbi.2015.08.004 
504 |a Kuang, K., Yiming, M., Wen, Q., Li, Y., Ma, L., Iserovich, P., Verkman, A.S., Fischbarg, J., Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice (2004) Exp Eye Res, 78, pp. 791-798. , COI: 1:CAS:528:DC%2BD2cXhsV2gtr0%3D, PID: 15037113 
504 |a Kumar, K., Mosa, K.A., Chhikara, S., Musante, C., White, J.C., Dhankher, O.P., Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity (2014) Planta, 239, pp. 187-198. , https://doi.org/10.1007/s00425-013-1969-y 
504 |a Kumari, S.S., Eswaramoorthy, S., Mathias, R.T., Varadaraj, K., Unique and analogous functions of aquaporin 0 for fiber cell architecture and ocular lens transparency (2011) Biochim Biophys Acta, 1812, pp. 1089-1097. , COI: 1:CAS:528:DC%2BC3MXptlWqt7c%3D, PID: 21511033 
504 |a Laur, J., Hacke, U.G., Transpirational demand affects aquaporin expression in poplar roots (2013) J Exp Bot, 64, pp. 2283-2293. , COI: 1:CAS:528:DC%2BC3sXnvV2nurw%3D, PID: 23599275 
504 |a Lee, J.K., Kozono, D., Remis, J., Kitagawa, Y., Agre, P., Stroud, R.M., Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 a (2005) Proc Natl Acad Sci U S A, 102, pp. 18932-18937. , COI: 1:CAS:528:DC%2BD28XivV2jsA%3D%3D, PID: 16361443 
504 |a Lee, H.K., Cho, S.K., Son, O., Xu, Z., Hwang, I., Kim, W.T., Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants (2009) Plant Cell, 21, pp. 622-641. , COI: 1:CAS:528:DC%2BD1MXksVKrt7o%3D, PID: 19234086 
504 |a Leitaõ, L., Prista, C., Moura, T.F., Loureiro-Dias, M.C., Soveral, G., Grapevine Aquaporins: gating of a tonoplast intrinsic protein (TIP2;1) by cytosolic pH (2012) PLoS ONE, 7 (3). , https://doi.org/10.1371/journal.pone.0033219, e33219 
504 |a Leitão, L., Prista, C., Loureiro-Dias, M.C., Moura, T.F., Soveral, G., The grapevine tonoplast aquaporin TIP2;1 is a pressure gated water channel (2014) Biochem Biophys Res Commun, 450, pp. 289-294. , PID: 24942877 
504 |a Leonhardt, N., Kwak, J.M., Robert, N., Waner, D., Leonhardt, S.J.I., Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant (2004) Plant Cell, 16, pp. 596-615. , COI: 1:CAS:528:DC%2BD2cXisFGkt7s%3D, PID: 14973164 
504 |a Lopez, F., Bousser, A., Sissoeff, I., Gaspar, M., Lachaise, B., Hoarau, J., Mahe, A., Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins (2003) Plant Cell Physiol, 44, pp. 1384-1395. , COI: 1:CAS:528:DC%2BD2cXhsFOjsQ%3D%3D, PID: 14701934 
504 |a Luu, D.T., Maurel, C., Aquaporin trafficking in plant cells: an emerging membrane-protein model (2013) Traffic, 14, pp. 629-635. , https://doi.org/10.1111/tra.12062 
504 |a Ma, T.H., Fukuda, N., Song, Y.L., Matthay, M.A., Verkman, A.S., Lung fluid transport in aquaporin-5 knock-out mice (2000) J Clin Invest, 105, pp. 93-100. , COI: 1:CAS:528:DC%2BD3cXislSrtA%3D%3D, PID: 10619865 
504 |a Ma, T., Hara, M., Sougrat, R., Verbavatz, J.M., Verkman, A.S., Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3 (2002) J Biol Chem, 277, pp. 17147-17153. , COI: 1:CAS:528:DC%2BD38XjslWgsrk%3D, PID: 11880378 
504 |a Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Yano, M., A silicon transporter in rice (2006) Nature, 440, pp. 688-691. , COI: 1:CAS:528:DC%2BD28XivFWgurw%3D, PID: 16572174 
504 |a Ma, J.F., Yamaji, N., Mitani, N., Xu, X.Y., Su, Y.H., McGrath, S.P., Zhao, F.J., Transporters of arsenite in rice and their role in arsenic accumulation in rice grain (2008) Proc Natl Acad Sci U S A, 105, pp. 9931-9935. , COI: 1:CAS:528:DC%2BD1cXptFGisbc%3D, PID: 18626020 
504 |a Maeda, N., Hibuse, T., Funahashi, T., Role of aquaporin-7 and aquaporin-9 in glycerol metabolism; involvement in obesity (2009) Springer Berlin Heidelberg (ed) Aquaporins, Handb Exp Pharmacol (190, pp. 233-249. , https://doi.org/10.1007/978–3–540-79885-9_12 
504 |a Manley, G.T., Fujimura, M., Ma, T., Noshita, N., Filiz, F., Bollen, A.W., Chan, P., Verkman, A.S., Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke (2000) Nat Med, 6, pp. 159-163. , COI: 1:CAS:528:DC%2BD3cXosFyqtA%3D%3D, PID: 10655103 
504 |a Marinelli, R.A., LaRusso, N.F., Aquaporin water channels in liver: their significance in bile formation (1997) Hepatology, 26, pp. 1081-1084. , COI: 1:CAS:528:DyaK2sXntl2jtro%3D, PID: 9362345 
504 |a Marples, D., Knepper, M.A., Christensen, E.I., Nielsen, S., Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct (1995) Am J Phys, 269, pp. C655-C664. , COI: 1:CAS:528:DyaK2MXotlWrsbw%3D 
504 |a Maurel, C., Reizer, J., Schroeder, J.I., Chrispeels, M.J., The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes (1993) EMBO J, 12, pp. 2241-2247. , COI: 1:CAS:528:DyaK3sXltFeguro%3D, PID: 8508761 
504 |a Maurel, C., Kado, R.T., Guern, J., Chrispeels, M.J., Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP (1995) EMBO J, 14, pp. 3028-3035. , COI: 1:CAS:528:DyaK2MXntVektb8%3D, PID: 7542585 
504 |a Maurel, C., Boursiac, Y., Luu, D.T., Santoni, V., Shahzad, Z., Verdoucq, L., Aquaporins in plants (2015) Physiol Rev, 95, pp. 1321-1358. , https://doi.org/10.1152/physrev.00008.2015 
504 |a Maurel, C., Verdoucq, L., Rodrigues, O., Aquaporins and plant transpiration (2016) Plant Cell Env, 39, pp. 2580-2587. , https://doi.org/10.1111/pce.12814 
504 |a Mennone, A., Verkman, A.S., Boyer, J.L., Unimpaired osmotic water permeability and fluid secretion in bile duct epithelia of AQP1 null mice (2002) Am J Phys, 283, pp. G739-G746. , COI: 1:CAS:528:DC%2BD38XntFOmt74%3D 
504 |a Miller, E.W., Dickinson, B.C., Chang, C.J., Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling (2010) Proc Natl Acad Sci U S A, 107, pp. 15681-15686. , COI: 1:CAS:528:DC%2BC3cXhtFOqtLjL, PID: 20724658 
504 |a Missner, A., Pohl, P., 110 years of the Meyer–Overton rule: predicting membrane permeability of gases and other small compounds (2009) Chem Phys Chem, 10, pp. 1405-1414. , https://doi.org/10.1002/cphc.200900270 
504 |a Mitsuma, T., Tani, K., Hiroaki, Y., Kamegawa, A., Suzuki, H., Hibino, H., Kurachi, Y., Fujiyoshi, Y., Influence of the cytoplasmic domains of aquaporin-4 on water conduction and array formation (2010) J Mol Biol, 402, pp. 669-681. , https://doi.org/10.1016/j.jmb.2010.07.060 
504 |a Montiel, V., Gomez, E.L., Bouzin, C., Esfahani, H., Romero Perez, M., Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids- dependent relaxation (2014) Pflugers Arch Eur J Physiol, 466, pp. 237-251. , COI: 1:CAS:528:DC%2BC3sXhtFChtb%2FO 
504 |a Moore, M., Ma, T.H., Yang, B.X., Verkman, A.S., Tear secretion by lacrimal glands in transgenic mice lacking water channels AQP1, AQP3, AQP4 and AQP5 (2000) Exp Eye Res, 70, pp. 557-562. , COI: 1:CAS:528:DC%2BD3cXksVertLw%3D, PID: 10870513 
504 |a Mori, I.C., Rhee, J., Shibasaka, M., Sasano, S., Kaneko, T., Horie, T., Katsuhara, M., CO2 transport by PIP2 aquaporins of barley (2014) Plant Cell Physiol, 55, pp. 251-257. , https://doi.org/10.1093/pcp/pcu003 
504 |a Morishita, Y., Matsuzaki, T., Hara-chikuma, M., Andoo, A., Shimono, M., Matsuki, A., Kobayashi, K., Verkman, A.S., Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule (2005) Mol Cell Biol, 25, pp. 7770-7779. , COI: 1:CAS:528:DC%2BD2MXpsFKhtr0%3D, PID: 16107722 
504 |a Mosa, K.A., Kumar, K., Chhikara, S., Musante, C., White, J.C., Dhankher, O.P., Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins (2016) Sci Rep, 6 (21640). , https://doi.org/10.1038/srep21640 
504 |a Moshelion, M., Becker, D., Biela, A., Uehlein, N., Hedrich, R., Otto, B., Levi, H., Kaldenhoff, R., Plasma membrane aquaporins in the motor cells of Samanea Saman: diurnal and circadian regulation (2002) Plant Cell, 14, pp. 727-739. , COI: 1:CAS:528:DC%2BD38XivVegtLc%3D, PID: 11910017 
504 |a Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., Engel, A., Fujiyoshi, Y., Structural determinants of water permeation through aquaporin-1 (2000) Nature, 407, pp. 599-605. , https://doi.org/10.1038/35036519 
504 |a Nagaraju, G.P., Basha, R., Rajitha, B., Alese, O.B., Alam, A., Pattnaik, S., El-Rayes, B., Aquaporins: their role in gastrointestinal malignancies (2016) Cancer Lett, 373, pp. 12-18. , https://doi.org/10.1016/j.canlet.2016.01.003 
504 |a Nakhoul, N.L., Davis, B.A., Romero, M.F., Boron, W.F., Effect of expressing the water channel aquaporin-1 on the CO 2 permeability of Xenopus oocytes (1998) Am J Phys, 274 (2), pp. C543-C548. , COI: 1:CAS:528:DyaK1cXis1yqs70%3D 
504 |a Navarro-Ródenas, A., Ruíz-Lozano, J.M., Kaldenhoff, R., Morte, A., The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO 2 transport (2011) Molec Plant Micobe Interact, 25 (2), pp. 259-266 
504 |a Negishi, T., Oshima, K., Hattori, M., Kanai, M., Mano, S., Nishimura, M., Yoshida, K., Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant (2012) PLoS ONE, 7. , COI: 1:CAS:528:DC%2BC38Xht12htL7F, PID: 22952644 
504 |a Nehls, U., Dietz, S., (2014) Fungal aquaporins: cellular functions and ecophysiological perspectives. Applied Microbiology and Biotechnology, , https://doi.org/10.1007/s00253-014-6049-0, Springer, Berlin 
504 |a Németh-Cahalan, K.L., Hall, J.E., pH and calcium regulate the water permeability of aquaporin 0 (2000) J Biol Chem, 275, pp. 6777-6782. , PID: 10702234 
504 |a Németh-Cahalan, K.L., Kalman, K., Hall, J.E., Molecular basis of pH and Ca2+ regulation of aquaporin water permeability (2004) J Gen Physiol, 123, pp. 573-580. , PID: 15078916 
504 |a Newby, Z.E., O’Connell, J., 3rd, Robles-Colmenares, Y., Khademi, S., Miercke, L.J., Stroud, R.M., Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodiumfalciparum (2008) Nat Struct Mol Biol, 15, pp. 619-625. , https://doi.org/10.1038/nsmb.1431 
504 |a Nielsen, S., Smith, B.L., Christensen, E.I., Knepper, M.A., Agre, P., CHIP28 water channels are localized in constitutively water-permeable segments of the nephron (1993) J Cell Biol, 120, pp. 371-383. , COI: 1:CAS:528:DyaK3sXpvVKmsA%3D%3D, PID: 7678419 
504 |a Niemietz, C.M., Tyerman, S.D., Characterization of water channels in wheat root membrane vesicles (1997) Plant Physiol, 115, pp. 561-567. , COI: 1:CAS:528:DyaK2sXntFSlsro%3D, PID: 12223824 
504 |a Noda, Y., Sasaki, S., Trafficking mechanism of water channel aquaporin-2 (2005) Biol Cell, 97, pp. 885-892. , COI: 1:CAS:528:DC%2BD2MXht1Crtb7E, PID: 16293109 
504 |a Noda, Y., Sohara, E., Ohta, E., Sasaki, S., Aquaporins in kidney pathophysiology (2010) Nat Rev Nephrol, 6, pp. 168-178. , COI: 1:CAS:528:DC%2BC3cXisValtbo%3D, PID: 20101255 
504 |a Novikova, G.V., Tournaire-Roux, C., Sinkevich, I.A., Lityagina, S.V., Maurel, C., Obroucheva, N., Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds (2014) Plant Physiol Biochem, 82, pp. 123-132. , COI: 1:CAS:528:DC%2BC2cXht1ensrjK, PID: 24946225 
504 |a Nyblom, M., Frick, A., Wang, Y., Ekvall, M., Hallgren, K., Hedfalk, K., Neutze, R., Törnroth-Horsefield, S., Structural and functional analysis of SoPIP2;1 mutants add insight into plant aquaporin gating (2009) J Mol Biol, 387, pp. 653-668. , https://doi.org/10.1016/j.jmb.2009.01.065 
504 |a Oliviusson, P., Salaj, J., Hakman, I., Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies) (2001) Plant Mol Biol, 46, pp. 289-299. , COI: 1:CAS:528:DC%2BD3MXlslKmuro%3D, PID: 11488476 
504 |a Otto, B., Uehlein, N., Sdorra, S., Fischer, M., Ayaz, M., Belastegui-Macadam, X., Heckwolf, M., Kaldenhoff, R., Aquaporin tetramer composition modifies the function of tobacco aquaporins (2010) J Biol Chem, 285, pp. 31253-31260. , COI: 1:CAS:528:DC%2BC3cXht1aqtrnP, PID: 20657033 
504 |a Ozu, M., Dorr, R.A., Politi, M.T., Parisi, M., Toriano, R., Water flux through human aquaporin 1: inhibition by intracellular furosemide and maximal response with high osmotic gradients (2011) Eur Biophys J, 40, pp. 737-746. , COI: 1:CAS:528:DC%2BC3MXlslChsLw%3D, PID: 21373963 
504 |a Ozu, M., Dorr, R.A., Gutiérrez, F., Politi, M.T., Toriano, R., Human AQP1 is a constitutively open channel that closes by a membrane-tension-mediated mechanism (2013) Biophys J, 104, pp. 85-95. , COI: 1:CAS:528:DC%2BC3sXmvVOiug%3D%3D, PID: 23332061 
504 |a Page, E., Winterfield, J., Goings, G., Bastawrous, A., Upshaw-Earley, J., Water channel proteins in rat cardiac myocyte caveolae: osmolarity-dependent reversible internalization (1998) Am J Physiol Heart Circ Physiol, 274, pp. H1988-H2000. , COI: 1:CAS:528:DyaK1cXkt1Wqtbg%3D 
504 |a Palanivelu, D.V., Kozono, D.E., Engel, A., Suda, K., Lustig, A., Agre, P., Schirmer, T., Co-axial Association of Recombinant eye Lens Aquaporin-0 observed in loosely packed 3D-crystals (2006) J Mol Biol, 355, pp. 605-611. , https://doi.org/10.1016/J.JMB.2005.10.032 
504 |a Pang, Y., Li, L., Ren, F., Lu, P., Wei, P., Cai, J., Xin, L., Wang, X., Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis (2010) J Genet Genom, 37 (389-397), pp. 1-2. , https://doi.org/10.1016/S1673-8527(09)60057-6 
504 |a Papadopoulos, M.C., Verkman, A.S., Aquaporin-4 gene disruption inmice reduces brain swelling and mortality in pneumococcal meningitis (2005) J Biol Chem, 280, pp. 13906-13912. , COI: 1:CAS:528:DC%2BD2MXivV2ku7Y%3D, PID: 15695511 
504 |a Park, W., Scheffler, B.E., Bauer, P.J., Campbell, B.T., Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.) (2010) BMC Plant Biol, 10, p. 142. , PID: 20626869 
504 |a Pastor-Soler, N., Isnard-Bagnis, C., Herak-Kramberger, C., Sabolic, I., Van Hoek, A., Brown, D., Breton, S., Expression of aquaporin 9 in the adult rat epididymal epithelium is modulated by androgens (2002) Biol Reprod, 66, pp. 1716-1722. , COI: 1:CAS:528:DC%2BD38XjvFegurs%3D, PID: 12021052 
504 |a Pérez Di Giorgio, J., Soto, G., Alleva, K., Jozefkowicz, C., Amodeo, G., Muschietti, J.P., Ayub, N.D., Prediction of aquaporin function by integrating evolutionary and functional analyses (2014) J Memb Biol, 247, pp. 107-125. , https://doi.org/10.1007/s00232-013-9618-8 
504 |a Pérez Di Giorgio, J., Bienert, G.P., Ayub, N.D., Yaneff, A., Barberini, M.L., Mecchia, M.A., Amodeo, G., Muschietti, J.P., Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for reproduction in Arabidopsis thaliana (2016) Plant Cell, 28, pp. 1053-1077. , https://doi.org/10.1105/tpc.15.00776 
504 |a Pérez Di Giorgio, J.A., Soto, G.C., Muschietti, J.P., Amodeo, G., Pollen Aquaporins: the solute factor (2016) Front Plant Sci, 7, p. 1659. , PID: 27881985, eCollection 2016 
504 |a Pittock, S.J., Lucchinetti, C.F., Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later (2016) Ann N Y Acad Sci, 1366, pp. 20-39. , https://doi.org/10.1111/nyas.12794 
504 |a Postaire, O., Tournaire-Roux, C., Grondin, A., Boursiac, Y., Morillon, R., Schäffner, T., Maurel, C., A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis (2010) Plant Physiol, 152, pp. 1418-1430 
504 |a Prado, K., Boursiac, Y., Tournaire-Roux, C., Monneuse, J.M., Postaire, O., Da Ines, O., Schäffner, A.R., Maurel, C., Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins (2013) Plant Cell, 25, pp. 1029-1039. , COI: 1:CAS:528:DC%2BC3sXnsFSisr4%3D, PID: 23532070 
504 |a Prak, S., Hem, S., Boudet, J., Viennois, G., Sommerer, N., Rossignol, M., Maurel, C., Santoni, V., Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress (2008) Mol Cell Proteomics, 7, pp. 1019-1030. , https://doi.org/10.1074/mcp.M700566-MCP200 
504 |a Prasch, C.M., Ott, K.V., Bauer, H., Ache, P., Hedrich, R., Sonnewald, U., β- amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells (2015) J Exp Botany, 66, pp. 6059-6067. , COI: 1:CAS:528:DC%2BC2MXitVGjurbM 
504 |a Preston, G.M., Agre, P., Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family (1991) Proc Natl Acad Sci U S A, 88, pp. 11110-11114. , COI: 1:CAS:528:DyaK3sXhtF2itrs%3D, PID: 1722319 
504 |a Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P., Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein (1992) Science, 256, pp. 385-387. , https://doi.org/10.1126/science.256.5055.385 
504 |a Quigley, F., Rosenberg, J.M., Shachar-Hill, Y., Bohnert, H.J., From genome to function: the Arabidopsis aquaporins (2001) Genome Biol, 3, pp. 1-17 
504 |a Rambow, J., Wu, B., Rönfeldt, D., Beitz, E., Aquaporins with anion/monocarboxylate permeability: mechanisms, relevance for pathogen-host interactions (2014) Front Pharmacol, 5 (199). , https://doi.org/10.3389/fphar.2014.00199 
504 |a Reichow, S.L., Clemens, D.M., Freites, J.A., Németh-Cahalan, K.L., Heyden, M., Tobias, D.J., Hall, J.E., Gonen, T., Allosteric mechanism of water-channel gating by Ca2 + –calmodulin. Nat Struc (2013) Mol Biol, 20, pp. 1085-1092. , https://doi.org/10.1038/nsmb.2630 
504 |a Ren, G., Cheng, A., Reddy, V., Melnyk, P., Mitra, A.K., Three-dimensional fold of the human AQP1 water channel determined at 4 a resolution by electron crystallography of two-dimensional crystals embedded in ice (2000) J Mol Biol, 301, pp. 369-387. , COI: 1:CAS:528:DC%2BD3cXltlCjs7o%3D, PID: 10926515 
504 |a Ribatti, D., Ranieri, G., Annese, T., Nico, B., Aquaporins in cancer (2014) Biochim Biophys Acta, 1840, pp. 1550-1553. , COI: 1:CAS:528:DC%2BC3sXhsF2nu7rJ, PID: 24064112 
504 |a Rivers, R.L., Dean, R.M., Chandy, G., Hall, J.E., Roberts, D.M., Zeidel, M.L., Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes (1997) J Biol Chem, 272, pp. 16256-16261. , COI: 1:CAS:528:DyaK2sXkt1ajt7c%3D, PID: 9195927 
504 |a Ruiz Carrillo, D., To Yiu Ying, J., Darwis, D., Soon, C.H., Cornvik, T., Torres, J., Lescar, J., Crystallization and preliminary crystallographic analysis of human aquaporin 1 at a resolution of 3.28 a (2014) Acta Crystallogr Sect F, 70, pp. 1657-1663. , https://doi.org/10.1107/S2053230X14024558 
504 |a Ruiz-Lozano, J.M., del Mar, A.M., Barzana, G., Vernieri, P., Aroca, R., Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins (2009) Plant Mol Biol, 70, pp. 565-579. , COI: 1:CAS:528:DC%2BD1MXnt12nuro%3D, PID: 19404751 
504 |a Rutkovskiy, A., Valen, G., Vaage, J., Cardiac aquaporins (2013) Basic Res Cardiol, 108 (393). , https://doi.org/10.1007/s00395-013-0393-6 
504 |a Saadoun, S., Papadopoulos, M.C., Hara-Chikuma, M., Verkman, A.S., Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption (2005) Nature, 434, pp. 786-792. , COI: 1:CAS:528:DC%2BD2MXivFCgurs%3D, PID: 15815633 
504 |a Sade, N., Moshelion, M., (2017) Plant Aquaporins and Abiotic Stress in: Chaumont Tyerman (ed) Plant aquaporins, from transport to signaling, pp. 185-206. , Springer, Berlin 
504 |a Sakr, S., Alves, G., Morillon, R., Maurel, K., Decourteix, M., Guilliot, A., Fleurat-Lessard, P., Chrispeels, M.J., Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree (2003) Plant Physiol, 133, pp. 630-641. , COI: 1:CAS:528:DC%2BD3sXosVaqtL4%3D, PID: 14526109 
504 |a Sakurai, J., Ahamed, A., Murai, M., Maeshima, M., Uemura, M., Tissue and cell-specific localization of rice aquaporins and their water transport activities (2008) Plant Cell Physiol, 49, pp. 30-39. , COI: 1:CAS:528:DC%2BD1cXitVSgtLo%3D, PID: 18037610 
504 |a Santoni, V., (2017) Plant Aquaporin Posttranslational Regulation in: Chaumont Tyerman (ed) Plant aquaporins, from transport to signaling, pp. 83-106. , Springer, Berlinn 
504 |a Santoni, V., Verdoucq, L., Sommerer, N., Vinh, J., Pflieger, D., Maurel, C., Methylation of aquaporins in plant plasma membrane (2006) Biochem J, 400, pp. 189-197. , COI: 1:CAS:528:DC%2BD28XhtFaksLbI, PID: 16839310 
504 |a Sarda, X., Tousch, D., Ferrare, K., Legrand, E., Dupuis, J.M., Casse-Delbart, F., Lamaze, T., Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells (1997) Plant J, 12, pp. 1103-1111. , COI: 1:CAS:528:DyaK1cXktlCksA%3D%3D, PID: 9418051 
504 |a Sasaki, S., Yui, N., Noda, Y., Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model (2014) Biochim Biophys Acta, 1838, pp. 514-520. , https://doi.org/10.1016/j.bbamem.2013.06.004 
504 |a Savage, D.F., Egea, P.F., Robles-Colmenares, Y., O’Connell, J.D., 3rd, Stroud, R.M., Architecture and selectivity in aquaporins: 2.5 a X-ray structure of aquaporin Z (2003) PLoS Biol, 1, p. E72. , PID: 14691544 
504 |a Scheuring, S., Buzhynskyy, N., Jaroslawski, S., Goncalves, R.P., Hite, R.K., Walz, T., Structural models of the supramolecular organization of AQP0 and connexons in junctional microdomains (2007) J Struct Biol, 160, pp. 385-394. , COI: 1:CAS:528:DC%2BD2sXhtlajsr3K, PID: 17869130 
504 |a Schnermann, J., Chou, C.L., Ma, T., Traynor, T., Knepper, M.A., Verkman, A.S., Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice (1998) Proc Natl Acad Sci U S A, 95, pp. 9660-9664. , COI: 1:CAS:528:DyaK1cXltlCltrk%3D, PID: 9689137 
504 |a Schnurbusch, T., Hayes, J., Hrmova, M., Baumann, U., Ramesh, S.A., Tyerman, S.D., Langridge, P., Sutton, T., Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1 (2010) Plant Physiol, 153, pp. 1706-1715. , https://doi.org/10.1104/pp.110.158832 
504 |a Secchi, F., Zwieniecki, M.A., Patterns of PIP gene expression in Populus Trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process (2010) Plant Cell Environ, 33, pp. 1285-1297. , COI: 1:CAS:528:DC%2BC3cXhtVGks7jN, PID: 20302602 
504 |a Shachar-Hill, B., Hill, A.E., Powell, J., Skepper, J.N., Shachar-Hill, Y., Mercury-sensitive water channels as possible sensors of water potentials in pollen (2013) J Exp Bot, 64, pp. 5195-5205. , https://doi.org/10.1093/jxb/ert311 
504 |a Shanahan, C.M., Connolly, D.L., Tyson, K.L., Cary, N.R., Osbourn, J.K., Agre, P., Weissberg, P.L., Aquaporin-1 is expressed by vascular smooth muscle cells and mediates rapid water transport across vascular cell membranes (1999) J Vasc Res, 36, pp. 353-362. , COI: 1:CAS:528:DyaK1MXnsVykurs%3D, PID: 10559675 
504 |a Shields, S.D., Mazario, J., Skinner, K., Basbaum, A.I., Anatomical and functional analysis of aquaporin 1, a water channel in primary afferent neurons (2007) Pain, 131, pp. 8-20. , COI: 1:CAS:528:DC%2BD2sXosFKkur8%3D, PID: 17257750 
504 |a Smart, L.B., Moskal, W.A., Cameron, K.D., Bennett, A.B., MIP genes are down-regulated under drought stress in Nicotiana glauca (2001) Plant Cell Physiol, 42, pp. 686-693. , COI: 1:CAS:528:DC%2BD3MXlsVeqtr0%3D, PID: 11479374 
504 |a Smith, A.J., Jin, B.J., Ratelade, J., Verkman, A.S., Aggregation state determines the localization and function of M1– and M23–aquaporin-4 in astrocytes (2014) J Cell Biol, 204, pp. 559-573. , https://doi.org/10.1083/jcb.201308118 
504 |a Song, J., Mak, E., Wu, B., Beitz, E., Parasite Aquaporins: current developments in drug facilitation and resistance (2014) Biochim Biophys Acta, 1840, pp. 1566-1573. , https://doi.org/10.1016/j.bbagen.2013.10.014 
504 |a Sorieul, M., Santoni, V., Maurel, C., Luu, D.T., Mechanisms and effects of retention of over-expressed aquaporin AtPIP2;1 in the endoplasmic reticulum (2011) Traffic, 12, pp. 473-482. , COI: 1:CAS:528:DC%2BC3MXksFOrsbY%3D, PID: 21182578 
504 |a Soto, G., Alleva, K., Mazzella, M.A., Amodeo, G., Muschietti, J.P., AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea (2008) FEBS Lett, 582, pp. 4077-4082. , https://doi.org/10.1016/j.febslet.2008.11.002 
504 |a Soto, G., Fox, R., Ayub, N., Alleva, K., Guaimas, F., Jares Erijman, E., Mazzella, A., Muschietti, J., TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana (2010) Plant J, 64, pp. 1038-1047. , https://doi.org/10.1111/j.1365-313X.2010.04395.x 
504 |a Soto, G., Alleva, K., Amodeo, G., Muschietti, J., Ayub, N.D., New insight into the evolution of aquaporins from flowering plants and vertebrates: orthologous identification and functional transfer is possible (2012) Gene, 503, pp. 165-176. , https://doi.org/10.1016/j.gene.2012.04.021 
504 |a Sougrat, R., Morand, M., Gondran, C., Barre, P., Gobin, R., Bonte, F., Dumas, M., Verbavatz, J.M., Functional expression of AQP3 in human skin epidermis and reconstructed epidermis (2002) J Invest Dermatol, 118, pp. 678-685. , COI: 1:CAS:528:DC%2BD38Xjt1Cisrk%3D, PID: 11918716 
504 |a Soveral, G., Madeira, A., Loureiro-Dias, M.C., Moura, T.F., Membrane tension regulates water transport in yeast (2008) Biochim Biophys Acta, 1778, pp. 2573-2579. , COI: 1:CAS:528:DC%2BD1cXht12rsb7P, PID: 18708027 
504 |a Sui, H., Han, N.G., Lee, J.K., Walian, P., Jap, B.K., Structural basis of water-specific transport through the AQP1 water channel (2001) Nature, 414, pp. 872-878. , https://doi.org/10.1038/414872a 
504 |a Sun, M.H., Xu, W., Zhu, Y.F., Su, W.A., Tang, Z.C., A simple method for in situ hybridization to RNA in guard cells of Vicia faba L.: the expression of aquaporins in guard cells (2001) Plant Mol Biol Rep, 19, pp. 129-135. , COI: 1:CAS:528:DC%2BD3MXltlShtrg%3D 
504 |a Sutka, M., Li, G., Boudet, J., Boursiac, Y., Doumas, P., Maurel, C., Natural variation of root hydraulics in Arabidopsis grown in normal and salt stress conditions (2011) Plant Physiol, 155, pp. 1264-1276. , COI: 1:CAS:528:DC%2BC3MXksFOrtL8%3D, PID: 21212301 
504 |a Tajkhorshid, E., Nollert, P., Jensen, M.Ø., Miercke, L.J., O’Connell, J., Stroud, R.M., Schulten, K., Control of the selectivity of the aquaporin water channel family by global orientational tuning (2002) Science, 296, pp. 525-530. , COI: 1:CAS:528:DC%2BD38XjtFaqsbk%3D, PID: 11964478 
504 |a Takano, J., Wada, M., Ludewig, U., Schaaf, G., von Wiren, N., Fujiwara, T., The Arabidopsis Major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation (2006) Plant Cell, 18, pp. 1498-1509. , PID: 16679457 
504 |a Tan, Y.J., Zhang, X.Y., Ding, G.L., Li, R., Wang, L., Jin, L., Lin, X.H., Huang, H.F., Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation (2015) Sci Rep, 5 (17741). , https://doi.org/10.1038/srep17741 
504 |a Tanaka, M., Wallace, I.S., Takano, J., Roberts, D.M., Fujiwara, T., NIP6; 1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis (2008) Plant Cell, 20, pp. 2860-2875. , COI: 1:CAS:528:DC%2BD1cXhsFWms7fJ, PID: 18952773 
504 |a Tani, K., Mitsuma, T., Hiroaki, Y., Kamegawa, A., Nishikawa, K., Tanimura, Y., Fujiyoshi, Y., Mechanism of aquaporin-4’s fast and highly selective water conduction and proton exclusion (2009) J Mol Biol, 389 (4), pp. 694-706. , https://doi.org/10.1016/j.jmb.2009.04.049 
504 |a Thiagarajah, J.R., Chang, J., Goettel, J.A., Verkman, A.S., Lencer, W.I., Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia (2017) Proc Nat Acad Sci U S A, 114, pp. 568-573. , https://doi.org/10.1073/pnas.1612921114 
504 |a Tian, S., Wang, X., Li, P., Wang, H., Ji, H., Xie, J., Dong, H., Plant aquaporin AtPIP1;4 links Apoplastic H 2 O 2 induction to disease immunity pathways (2016) Plant Physiol, 171, pp. 1635-1650. , https://doi.org/10.1104/pp.15.01237 
504 |a Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., Neutze, R., Kjellbom, P., Structural mechanism of plant aquaporin gating (2006) Nature, 439, pp. 688-694. , https://doi.org/10.1038/nature04316.688 
504 |a Törnroth-Horsefield, S., Hedfalk, K., Fischer, G., Lindkvist-Petersson, K., Neutze, R., Structural insights into eukaryotic aquaporin regulation (2010) FEBS Lett, 584, pp. 2580-2588. , https://doi.org/10.1016/j.febslet.2010.04.037 
504 |a Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D., Bligny, R., Maurel, C., Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins (2003) Nature, 425, pp. 393-397. , COI: 1:CAS:528:DC%2BD3sXnsV2ktrY%3D, PID: 14508488 
504 |a Tsukaguchi, H., Shayakul, C., Berger, U.V., Mackenzie, B., Devidas, S., Guggino, W.B., van Hoek, A.N., Hediger, M.A., Molecular characterization of a broad selectivity neutral solute channel (1998) J Biol Chem, 273, pp. 24737-24743. , COI: 1:CAS:528:DyaK1cXmtlyqtLw%3D, PID: 9733774 
504 |a Van Ekert, E., Chauvigné, F., Finn, R.N., Mathew, L.G., Hull, J.J., Cerdà, J., Fabrick, J.A., Molecular and functional characterization of Bemisia Tabaci aquaporins reveals the water channel diversity of hemipteran insects (2016) Insect Biochem Mol Biol, 77, pp. 39-51. , https://doi.org/10.1016/j.ibmb.2016.07.010 
504 |a Vandeleur, R.K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., Tyerman, S.D., The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine (2009) Plant Physiol, 149, pp. 445-460. , COI: 1:CAS:528:DC%2BD1MXjt1WqtL8%3D, PID: 18987216 
504 |a Vandeleur, R.K., Sullivan, W., Athman, A., Jordans, C., Gilliham, M., Kaiser, B.N., Tyerman, S.D., Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins (2014) Plant Cell Environ, 37, pp. 520-538. , COI: 1:CAS:528:DC%2BC2cXlsF2itA%3D%3D, PID: 23926961 
504 |a Vander Willigen, C., Postaire, O., Tournaire-Roux, C., Boursiac, Y., Maurel, C., Expression and inhibition of aquaporins in germinating Arabidopsis seeds (2006) Plant Cell Physiol, 47, pp. 1241-1250. , COI: 1:CAS:528:DC%2BD28XhtFCgur%2FO, PID: 16926168 
504 |a Vera-Estrella, R., Barkla, B.J., Bohnert, H.J., Pantoja, O., Novel regulation of aquaporins during osmotic stress (2004) Plant Physiol, 135, pp. 2318-2329. , COI: 1:CAS:528:DC%2BD2cXnt1Ggsb8%3D, PID: 15299122 
504 |a Verdoucq, L., Grondin, A., Maurel, C., Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons (2008) Biochem J, 415, pp. 409-416. , https://doi.org/10.1042/BJ20080275 
504 |a Verdoucq, L., Rodrigues, O., Martiniè, A., Luu, D.T., Maurel, C., Martinière, A., Maurel, C., Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling (2014) Curr Opi Plant Biol, 22, pp. 101-107. , https://doi.org/10.1016/j.pbi.2014.09.011 
504 |a Verkman, A.S., Aquaporin water channels and endothelial cell function (2002) J Anat, 200, pp. 617-627. , COI: 1:CAS:528:DC%2BD3sXjtFemt74%3D, PID: 12162729 
504 |a Verkman, A.S., Aquaporins in endothelia (2006) Kidney Int, 69, pp. 1120-1123. , COI: 1:CAS:528:DC%2BD28XivFOmtr0%3D, PID: 16508658 
504 |a Verkman, A.S., Aquaporins at a glance (2011) J Cell Sci, 124, pp. 2107-2112. , https://doi.org/10.1242/jcs.079467 
504 |a Verkman, A.S., Hara-Chikuma, M., Papadopoulos, M.C., Aquaporins: new players in cancer biology (2008) J Mol Med (Berl), 86, pp. 523-529. , https://doi.org/10.1007/s00109-008-0303-9 
504 |a Verkman, A.S., Anderson, M.O., Papadopoulos, M.C., Aquaporins: important but elusive drug targets (2014) Nature Rev Drug Disc, 13, pp. 259-277. , https://doi.org/10.1038/nrd4226 
504 |a Veselova, T.V., Veselovskii, V.A., Usmanov, P.D., Usmanova, O.V., Kozar, V.I., Hypoxia and imbibition injuries to aging seeds (2003) Russ J Plant Physiol, 50, pp. 835-842. , COI: 1:CAS:528:DC%2BD3sXovFWisbo%3D 
504 |a Von Bülow, J., Beitz, E., Number and regulation of protozoan aquaporins reflect environmental complexity (2015) Biol Bull, 229, pp. 38-46. , https://doi.org/10.1086/BBLv229n1p38 
504 |a Wan, X., Zwiazek, J.J., Mercuric chloride effects on root water transport in aspen seedlings (1999) Plant Physiol, 121, pp. 939-946. , COI: 1:CAS:528:DyaK1MXns12ntb0%3D, PID: 10557243 
504 |a Wan, X., Steudle, E., Hartung, W., Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl 2 (2004) J Exp Bot, 55, pp. 411-422. , COI: 1:CAS:528:DC%2BD2cXms1emtA%3D%3D, PID: 14739264 
504 |a Wang, Y., Tajkhorshid, E., Nitric oxide conduction by the brain aquaporin AQP4 (2010) Proteins, 78, pp. 661-670. , https://doi.org/10.1002/prot.22595 
504 |a Wang, K.S., Komar, A.R., Ma, T.H., Filiz, F., McLeroy, J., Hoda, H., Verkman, A.S., Bastidas, J.A., Gastric acid secretion in aquaporin-4 knockout mice (2000) Am J Phys, 279, pp. G448-G453. , COI: 1:CAS:528:DC%2BD3cXmtFyju7o%3D 
504 |a Wang, Y., Cohen, J., Boron, W.F., Schulten, K., Tajkhorshid, E., Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics (2007) J Struct Biol, 157, pp. 534-544. , COI: 1:CAS:528:DC%2BD2sXisVCnsrw%3D, PID: 17306562 
504 |a Wenke, J.L., Rose, K.L., Spraggins, J.M., Schey, K.L., MALDI imaging mass spectrometry spatially maps age-related Deamidation and truncation of human lens aquaporin-0 (2015) Invest Ophthalmol Vis Sci, 56, pp. 7398-7405. , https://doi.org/10.1167/iovs.15-18117 
504 |a Yan, Y., Huang, J., Ding, F., Mei, J., Zhu, J., Aquaporin 1 plays an important role in myocardial edema caused by cardiopulmonary bypass surgery in goat (2013) Int J Mol Med, 31, pp. 637-643. , COI: 1:CAS:528:DC%2BC3sXktVGqtbk%3D, PID: 23292298 
504 |a Yaneff, A., Sigaut, L., Marquez, M., Alleva, K., Pietrasanta, L.I., Amodeo, G., Heteromerization of PIP aquaporins affects their intrinsic permeability (2014) Proc Natl Acad Sci U S A, 111, pp. 231-236. , https://doi.org/10.1073/pnas.1316537111 
504 |a Yaneff, A., Sigaut, L., Gómez, N., Aliaga Fandiño, C., Alleva, K., Pietrasanta, L.I., Amodeo, G., Loop B serine of a plasma membrane aquaporin type PIP2 but not PIP1 plays a key role in pH sensing (2016) Biochim Biophys Acta, 1858, pp. 2778-2787. , https://doi.org/10.1016/j.bbamem.2016.08.002 
504 |a Yang, F., Kawedia, J.D., Menon, A.G., Cyclic AMP regulates aquaporin 5 expression at both the transcriptional and post-transcriptional levels through a protein-kinase pathway (2003) J Biol Chem, 278, pp. 2775-2779 
504 |a Yasui, M., Hazama, A., Kwon, T.H., Nielsen, S., Guggino, W.B., Agre, P., Rapid gating and anion permeability of an intracellular aquaporin (1999) Nature, 402, pp. 184-187. , COI: 1:CAS:528:DyaK1MXnsVektLg%3D, PID: 10647010 
504 |a Ye, Q., Wiera, B., Steudle, E., A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration (2004) J Exp Bot, 55, pp. 449-461. , COI: 1:CAS:528:DC%2BD2cXms1entA%3D%3D, PID: 14739267 
504 |a Yu, J., Yool, A.J., Schulten, K., Tajkhorshid, E., Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1 (2006) Structure, 14, pp. 1411-1423. , COI: 1:CAS:528:DC%2BD28XpsVKqt7g%3D, PID: 16962972 
504 |a Yui, N., Lu, H.J., Bouley, R., Brown, D., AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells (2012) Biol Open, 1, pp. 101-118. , https://doi.org/10.1242/bio.2011042 
504 |a Zelazny, E., Borst, J.W., Muylaert, M., Batoko, H., Hemminga, M.A., Chaumont, F., FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization (2007) Proc Natl Acad Sci U S A, 104, pp. 12359-12364. , COI: 1:CAS:528:DC%2BD2sXos1ehtro%3D, PID: 17636130 
504 |a Zelazny, E., Miecielica, U., Borst, J.W., Hemminga, M.A., Chaumont, F., An N-terminal diacidic motif is required for the trafficking of maize aquaporins ZmPIP2;4 and ZmPIP2;5 to the plasma membrane (2009) Plant J, 57, pp. 346-355. , COI: 1:CAS:528:DC%2BD1MXhs1Sgtb0%3D, PID: 18808456 
504 |a Zelenina, M., Zelenin, S., Bondar, A.A., Brismar, H., Aperia, A., Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine (2002) Am J Physiol Renal Physiol, 283, pp. F309-F318 
504 |a Zeuthen, T., Water-transporting proteins (2010) J Membr Biol, 234, pp. 57-73. , https://doi.org/10.1007/s00232-009-9216-y 
504 |a Zeuthen, T., Klaerke, D.A., Transport of water and glycerol in aquaporin 3 is gated by H(+) (1999) J Biol Chem, 274, pp. 21631-21636. , COI: 1:CAS:528:DyaK1MXltVyms7Y%3D, PID: 10419471 
504 |a Zeuthen, T., Alsterfjord, M., Beitz, E., MacAulay, N., Osmotic water transport in aquaporins: evidence for a stochastic mechanism (2013) J Physiol, 591, pp. 5017-5029. , https://doi.org/10.1113/jphysiol.2013.261321 
504 |a Zeuthen, T., Gorraitz, E., Her, K., Wright, E.M., Loo, D.D., Structural and functional significance of water permeation through cotransporters (2016) Proc Natl Acad Sci U S A, 113, pp. E6887-E6894. , COI: 1:CAS:528:DC%2BC28Xhs1ykurjN, PID: 27791155 
504 |a Zhang, H.Z., Kim, M.H., Lim, J.H., Bae, H.R., Time-dependent expression patterns of cardiac aquaporins following myocardial infarction (2013) J Korean Med Sci, 28, pp. 402-408. , COI: 1:CAS:528:DC%2BC3sXmsFWltL4%3D, PID: 23487012 
504 |a Zhao, X.Q., Mitani, N., Yamaji, N., Shen, R.F., Ma, J.F., Involvement of silicon influx trans- porter OsNIP2;1 in selenite uptake in rice (2010) Plant Physiol, 153, pp. 1871-1877. , COI: 1:CAS:528:DC%2BC3cXhtVCrsr3N, PID: 20498338 
504 |a Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., Wang, C., He, G., Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco (2012) PLoS ONE, 7. , https://doi.org/10.1371/journal.pone.0052439, e52439 
504 |a Zwiazek, J.J., Xu, H., Tan, X., Navarro-Ródenas, A., Morte, A., Significance of oxygen transport through aquaporins (2017) Sci Rep, 7. , https://doi.org/10.1038/srep40411, 40411 
520 3 |a Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group. While the structure of almost half of mammal AQPs was resolved, only a few were resolved in plants. Strikingly, the animal structures resolved are mainly derived from the AQP2-lineage, due to their important roles in water homeostasis regulation in humans. The difference could be attributed to the approach: relevance in animal research is emphasized on pathology and in consequence drug screening that can lead to potential inhibitors, enhancers and/or regulators. By contrast, studies on plants have been mainly focused on the physiological role that AQPs play in growth, development and stress tolerance. (2) The transport capacity. Besides the well-described AQPs with high water transport capacity, large amount of evidence confirms that certain plant AQPs can carry a large list of small solutes. So far, animal AQP list is more restricted. In both kingdoms, there is a great amount of evidence on gas transport, although there is still an unsolved controversy around gas translocation as well as the role of the central pore of the tetramer. (3) More roles than expected. We found it remarkable that the view of AQPs as specific channels has evolved first toward simple transporters to molecules that can experience conformational changes triggered by biochemical and/or mechanical signals, turning them also into signaling components and/or behave as osmosensor molecules. © 2017, International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT14-17 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, BID PICT14-0744 
536 |a Detalles de la financiación: Funding This work is supported by Agencia Nacional para la Promoción Científica y Técnica [Préstamo BID PICT14-0744] and Universidad de Buenos Aires [UBACyT14-17], all grants to G.A. 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
690 1 0 |a AQUAPORINS 
690 1 0 |a DIVERSITY 
690 1 0 |a OSMOSENSOR 
690 1 0 |a SOLUTES 
690 1 0 |a AQUAGLYCEROPORIN 
690 1 0 |a AQUAPORIN 
690 1 0 |a AQUAPORIN 1 
690 1 0 |a AQUAPORIN 10 
690 1 0 |a AQUAPORIN 11 
690 1 0 |a AQUAPORIN 12 
690 1 0 |a AQUAPORIN 2 
690 1 0 |a AQUAPORIN 3 
690 1 0 |a AQUAPORIN 4 
690 1 0 |a AQUAPORIN 5 
690 1 0 |a AQUAPORIN 6 
690 1 0 |a AQUAPORIN 7 
690 1 0 |a AQUAPORIN 8 
690 1 0 |a AQUAPORIN 9 
690 1 0 |a ARGININE 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a EPIDERMAL GROWTH FACTOR 
690 1 0 |a GLPF LIKE INTRINSIC PROTEIN 
690 1 0 |a GLYCEROL TRANSPORTER 
690 1 0 |a HYBRID INTRINSIC PROTEIN 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a HYDROXYL RADICAL 
690 1 0 |a NODULIN 26 LIKE INTRINSIC PROTEIN 
690 1 0 |a PLASMA MEMBRANE INTRINSIC PROTEIN 
690 1 0 |a SMALL BASIC INTRINSIC PROTEIN 
690 1 0 |a SUPEROXIDE 
690 1 0 |a TONOPLAST INTRINSIC PROTEIN 
690 1 0 |a UNCATEGORIZED INTRINSIC PROTEIN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a UNINDEXED DRUG 
690 1 0 |a VASOPRESSIN 
690 1 0 |a CRYSTAL STRUCTURE 
690 1 0 |a DEVELOPMENT 
690 1 0 |a DRUG SCREENING 
690 1 0 |a GAS TRANSPORT 
690 1 0 |a GROWTH 
690 1 0 |a HOMEOSTASIS AND REGULATION 
690 1 0 |a HUMAN 
690 1 0 |a HYDRAULIC CONDUCTIVITY 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN LOCALIZATION 
690 1 0 |a REGULATORY MECHANISM 
690 1 0 |a REVIEW 
690 1 0 |a STRESS 
690 1 0 |a WATER TRANSPORT 
650 1 7 |2 spines  |a GASES 
650 1 7 |2 spines  |a PH 
700 1 |a Amodeo, G. 
700 1 |a Ozu, M. 
773 0 |d Springer Verlag, 2017  |g v. 9  |h pp. 545-562  |k n. 5  |p Biophys. Rev.  |x 18672450  |t Biophysical Reviews 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032180803&doi=10.1007%2fs12551-017-0313-3&partnerID=40&md5=46bdaa6bdbca0d74980a9935b2da2bc9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s12551-017-0313-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_18672450_v9_n5_p545_Sutka  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18672450_v9_n5_p545_Sutka  |y Registro en la Biblioteca Digital 
961 |a paper_18672450_v9_n5_p545_Sutka  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78489