Different encoding alternatives for the prediction of halogenated polymers glass transition temperature by quantitative structure–property relationships

The glass transition temperature, Tg, is one of the most important properties of amorphous polymers. The ability to predict the Tg value of a polymer preceding its synthesis is of enormous value. For this reason it is of great value to perform a predictive quantitative structure–property relationshi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mercader, A.G
Otros Autores: Bacelo, D.E, Duchowicz, P.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Inc. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11485caa a22010577a 4500
001 PAPER-17529
003 AR-BaUEN
005 20230518204849.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85029668739 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Mercader, A.G. 
245 1 0 |a Different encoding alternatives for the prediction of halogenated polymers glass transition temperature by quantitative structure–property relationships 
260 |b Taylor and Francis Inc.  |c 2017 
270 1 0 |m Duchowicz, P.R.; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CCT La Plata-CONICET, UNLP, Diag. 113 y 64, Sucursal 4, C.C. 16, Argentina; email: pabloducho@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Van Krevelen, D.W., (1990) Properties of Polymers, , Amsterdam: Elsevier 
504 |a Yu, X., Support vector machine-based QSPR for the prediction of glass transition temperatures of polymers (2010) Fibers Polym., 11, pp. 757-766 
504 |a Krause, S., Gormley, J.J., Roman, N., Shetter, J.A., Watanabe, W.H., Glass temperatures of some acrylic polymers (1965) J. Polym. Sci. A Polym. Chem., 3, pp. 3573-3586 
504 |a Bicerano, J., (1996) Prediction of Polymer Properties, , New York: CRC Press 
504 |a Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S., Graphene-based polymer nanocomposites (2011) Polymer, 52, pp. 5-25 
504 |a Song, K., Zhang, Y., Meng, J., Green, E., Tajaddod, N., Li, H., Minus, M., Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship (2013) Materials, 6, p. 2543 
504 |a Ma, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review (2010) Compos. A Appl. Sci. Manuf., 41, pp. 1345-1367 
504 |a Katritzky, A.R., Sild, S., Lobanov, V., Karelson, M., Quantitative structure−property relationship (QSPR) correlation of glass transition temperatures of high molecular weight polymers (1998) J. Chem. Inf. Comput. Sci., 38, pp. 300-304 
504 |a Katritzky, A.R., Rachwal, P., Law, K.W., Karelson, M., Lobanov, V.S., Prediction of polymer glass transition temperatures using a general quantitative structure−property relationship treatment (1996) J. Chem. Inf. Comput. Sci., 36, pp. 879-884 
504 |a Cao, C., Lin, Y., Correlation between the glass transition temperatures and repeating unit structure for high molecular weight polymers (2003) J. Chem. Inf. Comput. Sci., 43, pp. 643-650 
504 |a Mattioni, B.E., Jurs, P.C., Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks (2002) J. Chem. Inf. Comput. Sci., 42, pp. 232-240 
504 |a Chen, X., Sztera, L., Cartwright, H., A neural network approach to prediction of glass transition temperature of polymers (2008) Int. J. Intell. Sys., 23, pp. 22-32 
504 |a Liu, W., Cao, C., Artificial neural network prediction of glass transition temperature of polymers (2009) Colloid. Polym. Sci., 287, pp. 811-818 
504 |a Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A., QSPR studies on refractive indices of structurally heterogeneous polymers (2015) Chemom. Intell. Lab. Syst., 140, pp. 86-91 
504 |a Mercader, A.G., Duchowicz, P.R., Encoding alternatives for the prediction of polyacrylates glass transition temperature by quantitative structure–property relationships (2016) Mater. Chem. Phys., 172, pp. 158-164 
504 |a Askadskii, A.A., (2003) Computational Materials Science of Polymers, , Cambridge: Cambridge International Science Publishing 
504 |a Rojas, C., Tripaldi, P., Duchowicz, P.R., A new QSPR study on relative sweetness (2016) Int. J. Quant. Struct.-Prop. Relat., 1, pp. 78-93 
504 |a Rojas, C., Duchowicz, P.R., Tripaldi, P., Pis Diez, R., Quantitative structure–property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase (2015) J. Chromatogr. A, 1422, pp. 277-288 
504 |a Rojas, C., Duchowicz, P.R., Tripaldi, P., Diez, R.P., QSPR analysis for the retention index of flavors and fragrances on a OV-101 column (2015) Chemom. Intell. Lab. Syst., 140, pp. 126-132 
504 |a Kaufman, L., Rousseeuw, P.J., (2005) Finding Groups in Data: An Introduction to Cluster Analysis, , New York: Wiley-Interscience, and 
504 |a Tetko, I., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Prokopenko, V.V., Virtual computational chemistry laboratory–Design and description (2005) J. Comput. Aided Mol. Des., 19, pp. 453-463 
504 |a http://www.disatunimibit/chm, DRAGON, Release 50 Evaluation Version. accessed March 7, 2016); Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Advances in the replacement and enhanced replacement method in QSAR and QSPR theories (2011) J. Chem. Inf. Model., 51, pp. 1575-1581 
504 |a Lee, A., Mercader, A.G., Duchowicz, P.R., Castro, E.A., Pomilio, A.B., QSAR study of the DPPH radical scavenging activity of di(hetero)arylamines derivatives of benzo[b]thiophenes, halophenols and caffeic acid analogues (2012) Chemom. Intell. Lab. Syst., 116, pp. 33-40 
504 |a Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., Modified and enhanced replacement method for the selection of molecular descriptors in QSAR and QSPR theories (2008) Chemom. Intell. Lab. Syst., 92, pp. 138-144 
504 |a Draper, N.R., Smith, H., (1981) Applied Regression Analysis, , New York: John Wiley & Sons, and 
504 |a Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories (2010) J. Chem. Inf. Model., 50, pp. 1542-1548 
504 |a Mercader, A.G., Duchowicz, P.R., Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories (2015) Chemom. Intell. Lab. Syst., 149, pp. 117-122 
504 |a Saxena, A.K., Prathipati, P., Comparison of MLR, PLS and GA-MLR in QSAR analysis (2003) SAR QSAR Environ. Res., 14, pp. 433-445 
504 |a Le, T., Epa, V.C., Burden, F.R., Winkler, D.A., Quantitative structure–property relationship modeling of diverse materials properties (2012) Chem. Rev., 112, pp. 2889-2919 
504 |a Wold, S., Eriksson, L., Statistical validation of QSAR results (1995) Chemometrics Methods in Molecular Design, , Waterbeemd H.V.D., (ed), Weinheim: VCH, 309–318, and,. In, ed 
504 |a Hawkins, D.M., Basak, S., Mills, D., Assessing model fit by cross-validation (2003) J. Chem. Inf. Model., 43, pp. 579-586 
504 |a Ravichran, V., Shalini, S., Sundram, K., Sokkalingam, A.D., QSAR study of substituted 1,3,4-oxadiazole naphthyridines as HIV-1 integrase inhibitors (2010) Eur. J. Med. Chem., 45, pp. 2791-2797 
504 |a Roy, K., On some aspects of validation of predictive quantitative structure–activity relationship models (2007) Expert Opin. Drug Discov., 2, pp. 1567-1577 
504 |a Gramatica, P., Principles of QSAR models validation: Internal and external (2007) QSAR Comb. Sci., 26, pp. 694-701 
504 |a Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs (2003) Environ. Health Perspect., 111, pp. 1361-1375 
504 |a Golbraikh, A., Tropsha, A., Beware of q2! (2002) J. Mol. Graphics Modell., 20, pp. 269-276 
520 3 |a The glass transition temperature, Tg, is one of the most important properties of amorphous polymers. The ability to predict the Tg value of a polymer preceding its synthesis is of enormous value. For this reason it is of great value to perform a predictive quantitative structure–property relationships analysis of Tg, in this case a new set of halogenated polymers was used for this purpose. In addition, to corroborate our previous findings, the best way to encode the polymers structure for this type of studies was further tested finding that the optimal option is once more to use three monomeric units. The best linear model constructed from 153 molecular structures incorporated seven molecular descriptors and showed excellent predictive ability. Furthermore, the method showed to be very simple and straightforward for the prediction of Tg since three-dimensional descriptors are not required. © 2017 Taylor & Francis.  |l eng 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva 
536 |a Detalles de la financiación: Universidad Nacional de La Plata, PIP11220130100311 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors thank the National Research Council of Argentina (CONICET) and INIFTA (CONICET, UNLP) for financial support. Pablo R. Duchowicz acknowledges the financial support from the National Research Council of Argentina (CONICET) PIP11220130100311 project and to Ministerio de Ciencia, Tecnología e Innovación Productiva for the electronic library facilities. 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CCT La Plata-CONICET, UNLP, La Plata, Argentina 
593 |a Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Buenos Aires, Argentina 
690 1 0 |a COMPUTATIONAL TECHNIQUES 
690 1 0 |a COMPUTER MODELING AND SIMULATION 
690 1 0 |a GLASS TRANSITIONS 
690 1 0 |a HALOGENATED POLYMERS 
690 1 0 |a QSPR 
690 1 0 |a ENCODING (SYMBOLS) 
690 1 0 |a FORECASTING 
690 1 0 |a GLASS 
690 1 0 |a HALOGENATION 
690 1 0 |a POLYMERS 
690 1 0 |a SIGNAL ENCODING 
690 1 0 |a TEMPERATURE 
690 1 0 |a COMPUTATIONAL TECHNIQUE 
690 1 0 |a COMPUTER MODELING AND SIMULATION 
690 1 0 |a HALOGENATED POLYMERS 
690 1 0 |a MOLECULAR DESCRIPTORS 
690 1 0 |a PREDICTIVE ABILITIES 
690 1 0 |a QSPR 
690 1 0 |a QUANTITATIVE STRUCTURES 
690 1 0 |a THREE-DIMENSIONAL DESCRIPTORS 
690 1 0 |a GLASS TRANSITION 
700 1 |a Bacelo, D.E. 
700 1 |a Duchowicz, P.R. 
773 0 |d Taylor and Francis Inc., 2017  |g v. 22  |h pp. 639-648  |k n. 7  |p Int. J. Polym. Anal. Charact.  |x 1023666X  |w (AR-BaUEN)CENRE-5304  |t International Journal of Polymer Analysis and Characterization 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029668739&doi=10.1080%2f1023666X.2017.1358847&partnerID=40&md5=62820daacb5b1fd9c200338c97776d97  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/1023666X.2017.1358847  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1023666X_v22_n7_p639_Mercader  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1023666X_v22_n7_p639_Mercader  |y Registro en la Biblioteca Digital 
961 |a paper_1023666X_v22_n7_p639_Mercader  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78482