The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants

In advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k OH ) for 118 emerging micropollutants, by means of quantitativ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ortiz, E.V
Otros Autores: Bennardi, D.O, Bacelo, D.E, Fioressi, S.E, Duchowicz, P.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16498caa a22014417a 4500
001 PAPER-17430
003 AR-BaUEN
005 20230518204839.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85030317510 
024 7 |2 cas  |a hydroxyl radical, 3352-57-6; Hydroxyl Radical; Water Pollutants, Chemical 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ESPLE 
100 1 |a Ortiz, E.V. 
245 1 4 |a The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants 
260 |b Springer Verlag  |c 2017 
270 1 0 |m Duchowicz, P.R.; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, Argentina; email: pabloducho@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a (2016), http://www.acdlabs.com; Aranda, J.F., Garro Martinez, J.C., Castro, E.A., Duchowicz, P.R., Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds (2016) Int J Mol Sci, 17, pp. 1247-1255 
504 |a Bagheri, M., Mohseni, M., A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water (2015) J Hazard Mater, 294, pp. 1-8. , COI: 1:CAS:528:DC%2BC2MXks12hsbw%3D 
504 |a Benfenati, E., (2013) Theory, guidance and applications on QSAR and REACH, , http://ebook.insilico.eu/insilico-ebook-orchestra-benfenati-ed1_rev-June2013.pdf, Orchestra 
504 |a Borhani, T.N.G., Saniedanesh, M., Bagheri, M., Lim, J.S., QSPR prediction of the hydroxyl radical rate constant of water contaminants (2016) Water Res, 98, pp. 344-353. , COI: 1:CAS:528:DC%2BC28Xms1Oqsrk%3D 
504 |a Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., Critical review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (OH/O − ) in aqueous solution (1988) J Phys Chem Ref Data, 17, pp. 513-886. , COI: 1:CAS:528:DyaL1cXlvFyisLc%3D 
504 |a Delgado, L.F., Charles, P., Glucina, K., Morlay, C., QSAR-like models: a potential tool for the selection of PhACs and EDCs for monitoring purposes in drinking water treatment systems—a review (2012) Water Res, 46, pp. 6196-6209. , COI: 1:CAS:528:DC%2BC38XhsVKitL7O 
504 |a Diudea, M.V.E., (2001) QSPR/QSAR studies by molecular descriptors, , Nova Science Publishers, New York 
504 |a Draper, N.R., Smith, H., (1981) Applied regression analysis, , John Wiley&Sons, New York 
504 |a Duchowicz, P.R., Castro, E.A., Fernández, F.M., Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies (2006) MATCH Commun Math Comput Chem, 55, pp. 179-192. , COI: 1:CAS:528:DC%2BD2sXps1SmsQ%3D%3D 
504 |a Duchowicz, P.R., Comelli, N.C., Ortiz, E.V., Castro, E.A., QSAR study for carcinogenicity in a large set of organic compounds (2012) Curr Drug Safe, 7, pp. 282-288. , COI: 1:CAS:528:DC%2BC3sXht1yhtL7P 
504 |a Duchowicz, P.R., Bennardi, D.O., Baselo, D.E., Bonifazi, E.L., Rios-Luci, C., Padrón, J.M., Burton, G., Misico, R.I., QSAR on antiproliferative naphthoquinones based on a conformation-independent approach (2014) Eur J Med Chem, 77, pp. 176-184. , COI: 1:CAS:528:DC%2BC2cXlvF2qurg%3D 
504 |a Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A., QSPR studies on refractive indices of structurally heterogeneous polymers (2015) Chemom Intell Lab Syst, 140, pp. 86-91. , COI: 1:CAS:528:DC%2BC2cXhvF2ru7bF 
504 |a Elovitz, M.S., von Gunten, U., Hydroxyl radical ozone ratios during ozonation processes. I The R ct concept (1999) Ozone Sci Eng, 21, pp. 239-260. , COI: 1:CAS:528:DyaK1MXksF2rsb0%3D 
504 |a Suite, E., U.S (2016) EPA:, , https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface, 4.11 
504 |a Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs (2003) Environ Health Perspect, 111, pp. 1361-1375. , COI: 1:CAS:528:DC%2BD3sXnt12rtLg%3D 
504 |a Golbraikh, A., Tropsha, A., Beware of q2! (2002) J Mol Graph Model, 20, pp. 269-276. , COI: 1:CAS:528:DC%2BD3MXpt1art7o%3D 
504 |a Gramatica, P., Principles of QSAR models validation: internal and external (2007) QSAR Comb Sci, 26, pp. 694-701. , COI: 1:CAS:528:DC%2BD2sXmtFKjtrs%3D 
504 |a Hansch, C., Leo, A., (1995) Exploring QSAR. fundamentals and applications in chemistry and biology, , American Chemical Society, Washington, D. C 
504 |a Hong, H., Xie, Q., Ge, W., Qian, F., Fang, H., Shi, L., Su, Z., Tong, W., Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics (2008) J Chem Inf Model, 48, pp. 1337-1344. , COI: 1:CAS:528:DC%2BD1cXnsVehtL0%3D 
504 |a (2016) Open Babel for Windows, , http://openbabel.org/wiki/Category:Installation 
504 |a Jagiello, K., Grzonkowska, M., Swirog, M., Ahmed, L., Rasulev, B., Avramopoulos, A., Papadopoulos, M.G., Puzyn, T., Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives (2016) J Nanopart Res, 18, p. 256 
504 |a Jaworska, J., Nikolova-Jeliazkova, N., Aldenberg, T., QSAR applicability domain estimation by projection of the training set in descriptor space: a review (2005) ATLA Altern Lab Anim, 18, p. 256 
504 |a Jin, X., Peldszus, S., Huck, P.M., Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes (2012) Water Res, 46, pp. 6519-6530. , COI: 1:CAS:528:DC%2BC38XhsFansb%2FI 
504 |a Jin, X., Peldszus, S., Huck, P.M., Predicting the reaction rate constants of micropollutants with hydroxyl radicals in water using QSPR modeling (2015) Chemosphere, 138, pp. 1-9. , COI: 1:CAS:528:DC%2BC2MXos1OntLk%3D 
504 |a Katritzky, A.R., Goordeva, E.V., Traditional topological indices vs. electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research (1993) J Chem Inf Comput Sci, 33, pp. 835-857. , COI: 1:CAS:528:DyaK3sXmsVSqs74%3D 
504 |a Kaufman, L., Rousseeuw, P.J., (2005) Finding groups in data: an introduction to cluster analysis, , Wiley, New York 
504 |a Kusic, H., Rasulev, B., Leszczynska, D., Leszczynski, J., Koprivanac, N., Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study (2009) Chemosphere, 75, pp. 1128-1134. , COI: 1:CAS:528:DC%2BD1MXltFWltbs%3D 
504 |a Lee, Y., Gunten, U., Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment (2012) Water Res, 46, pp. 6177-6195. , COI: 1:CAS:528:DC%2BC38Xht1OntbrI 
504 |a Lee, Y., von Gunten, U., Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment (2012) Water Res, 46, pp. 6177-6195. , COI: 1:CAS:528:DC%2BC38Xht1OntbrI 
504 |a Leonard, J.T., Roy, K., On selection of training and test sets for the development of predictive QSAR models (2006) QSAR Comb Sci, 25, pp. 235-251. , COI: 1:CAS:528:DC%2BD28XjtVahtb4%3D 
504 |a Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment (2014) Sci Total Environ, 473-474, pp. 619-641. , COI: 1:CAS:528:DC%2BC2cXhs1Crtb0%3D 
504 |a The MathWorks Inc., Masachussetts (2008) USA, , http://www.mathworks.com, Matlab 7.0 
504 |a Minakata, D., Li, K., Westerhoff, P., Crittenden, J., Development of a group contribution method to predict aqueous phase hydroxyl radical (OH) reaction rate constants (2009) Environ Sci Technol, 43, pp. 6220-6227. , COI: 1:CAS:528:DC%2BD1MXos1ehsLk%3D 
504 |a Monod, A., Doussin, J.F., Structure-activity relationship for the estimation of OH-oxidation rate constants of aliphatic organic compounds in the aqueous phase: alkanes, alcohols, organic acids and bases (2008) Atmos Environ, 42, pp. 7611-7622. , COI: 1:CAS:528:DC%2BD1cXht1GrsLzJ 
504 |a Morales, A.H., Duchowicz, P.R., Cabrera Pérez, M.A., Castro, E.A., Cordeiro, M.N.D.S., González, M.P., Application of the replacement method as a novel variable selection strategy in QSAR. 1. Carcinogenic potential (2006) Chemom Intell Lab Syst, 81, pp. 180-187. , COI: 1:CAS:528:DC%2BD28XivVCmtrg%3D 
504 |a (2016), http://www.yapcwsoft.com; Peres, J.A., Dominguez, J.R., Beltran-Heredia, J., Reaction of phenolic acids with fenton-generated hydroxyl radicals: Hammett correlation (2010) Desalination, 252, pp. 167-171. , COI: 1:CAS:528:DC%2BC3cXps1ejtQ%3D%3D 
504 |a Puzyn, T., Leszczynski, J., Cronin, M.T.D., (2010) Recent advances in QSAR studies: methods and applications: challenges and advances in computational chemistry and physics, , Springer Science&Business Media B.V, Netherlands 
504 |a Rojas, C., Duchowicz, P.R., Tripaldi, P., Pis Diez, R., Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase (2015) J Chromatogr A, 1422, pp. 277-288. , COI: 1:CAS:528:DC%2BC2MXhs1Ort7%2FL 
504 |a Rosenfeldt, E.J., Linden, K.G., The ROH, UV concept to characterize and the model UV/H 2 O 2 process in natural waters (2007) Environ Sci Technol, 41, pp. 2548-2553. , COI: 1:CAS:528:DC%2BD2sXitF2hur0%3D 
504 |a Roy, K., (2015) Quantitative structure-activity relationships in drug design, predictive toxicology, and risk assessment, , IGI Global, New York 
504 |a Roy, K., Roy, P.P., Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FAMLR, PLS, GFA, G/PLS and ANN techniques (2009) Eur J Med Chem, 44, pp. 2913-2922. , COI: 1:CAS:528:DC%2BD1MXltl2ltLc%3D 
504 |a Roy, K., Kar, S., Ambure, P., On a simple approach for determining applicability domain of QSAR models (2015) Chemom Intell Lab Syst, 145, pp. 22-29. , COI: 1:CAS:528:DC%2BC2MXnsF2gsro%3D 
504 |a Roy, K., Das, R.N., Ambure, P., Aher, R.B., Be aware of error measures. Further studies on validation of predictive QSAR models (2016) Chemom Intel Lab Syst, 152, pp. 18-33. , COI: 1:CAS:528:DC%2BC28Xhtlaltb4%3D 
504 |a Rücker, C., Rücker, G., Meringer, M., Y-randomization and its variants in QSPR/QSAR (2007) J Chem Inf Model, 47, pp. 2345-2357 
504 |a Sudhakaran, S., Amy, G.L., QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification (2013) Water Res, 47, pp. 1111-1122. , COI: 1:CAS:528:DC%2BC38XhvVKns77O 
504 |a Sudhakaran, S., Calvin, J., Amy, G.L., QSAR models for the removal of organic micropollutants in four different river water matrices (2012) Chemosphere, 87 (2), pp. 144-150. , COI: 1:CAS:528:DC%2BC38XjtFWhtrw%3D 
504 |a Todeschini, R., Consonni, V., (2009) Molecular descriptors for chemoinformatics (methods and principles in medicinal chemistry), , Wiley-VCH, Weinheim 
504 |a Toropov, A.A., Toropova, A.P., Rasulev, B.F., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., Coral: QSPR modeling of rate constants of reactions between organic aromatic pollutants and hydroxyl radical (2012) J Comput Chem, 33, pp. 1902-1906. , COI: 1:CAS:528:DC%2BC38Xns1Wnsb8%3D 
504 |a Yap, C.W., PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints (2011) J Comput Chem, 32, pp. 1466-1474. , COI: 1:CAS:528:DC%2BC3MXjsF2isLc%3D 
504 |a Zimbron, J.A., Reardon, K.F., Hydroxyl free radical reactivity toward aqueous chlorinated phenols (2005) Water Res, 39, pp. 865-869. , COI: 1:CAS:528:DC%2BD2MXhslGntbc%3D 
520 3 |a In advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k OH ) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares. The best multivariable linear regression (MLR) models are found with the replacement method variable subset selection technique. The proposed five-descriptor model has the following statistics for the training set: Rtrain2=0.88, RMS train = 0.21, while for the test set is Rtest2=0.87, RMS test = 0.11. This QSPR serves as a rational guide for predicting oxidation processes of micropollutants. © 2017, Springer-Verlag GmbH Germany.  |l eng 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva, MINCyT 
536 |a Detalles de la financiación: National Council for Scientific Research, NCSR 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, PIP11220130100311 
536 |a Detalles de la financiación: Funding information We thank the financial support provided by the National Research Council of Argentina (CONICET) PIP11220130100311 project and to Ministerio de Ciencia, Tecnología e Innovación Productiva for the electronic library facilities. 
593 |a IMCoDeG (CONICET), Facultad de Tecnología y Ciencias Aplicadas, Universidad Nacional de Catamarca, Maximio Victoria 55, Catamarca, Argentina 
593 |a Cátedra de Química Orgánica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (UNLP), 60 y 119, La Plata, B1904AAN, Argentina 
593 |a Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Buenos Aires, CP 1426, Argentina 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, La Plata, 1900, Argentina 
690 1 0 |a MOLECULAR DESCRIPTORS 
690 1 0 |a QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS 
690 1 0 |a REACTION RATE CONSTANT 
690 1 0 |a REPLACEMENT METHOD 
690 1 0 |a WATER MICROPOLLUTANT 
690 1 0 |a DEGRADATION 
690 1 0 |a HYDROXYL RADICAL 
690 1 0 |a MOLECULAR ANALYSIS 
690 1 0 |a OXIDATION 
690 1 0 |a POLLUTANT 
690 1 0 |a QUANTITATIVE ANALYSIS 
690 1 0 |a REACTION RATE 
690 1 0 |a REGRESSION ANALYSIS 
690 1 0 |a REPLACEMENT 
690 1 0 |a WATER POLLUTION 
690 1 0 |a WATER TREATMENT 
690 1 0 |a HYDROXYL RADICAL 
690 1 0 |a CHEMISTRY 
690 1 0 |a CONFORMATION 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a PROCEDURES 
690 1 0 |a QUANTITATIVE STRUCTURE ACTIVITY RELATION 
690 1 0 |a STATISTICAL MODEL 
690 1 0 |a THEORETICAL MODEL 
690 1 0 |a WATER MANAGEMENT 
690 1 0 |a WATER POLLUTANT 
690 1 0 |a HYDROXYL RADICAL 
690 1 0 |a LINEAR MODELS 
690 1 0 |a MODELS, THEORETICAL 
690 1 0 |a MOLECULAR CONFORMATION 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP 
690 1 0 |a WATER POLLUTANTS, CHEMICAL 
690 1 0 |a WATER PURIFICATION 
700 1 |a Bennardi, D.O. 
700 1 |a Bacelo, D.E. 
700 1 |a Fioressi, S.E. 
700 1 |a Duchowicz, P.R. 
773 0 |d Springer Verlag, 2017  |g v. 24  |h pp. 27366-27375  |k n. 35  |p Environ. Sci. Pollut. Res.  |x 09441344  |t Environmental Science and Pollution Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030317510&doi=10.1007%2fs11356-017-0315-5&partnerID=40&md5=128398e184ec0145925ee04e14e18132  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11356-017-0315-5  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09441344_v24_n35_p27366_Ortiz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09441344_v24_n35_p27366_Ortiz  |y Registro en la Biblioteca Digital 
961 |a paper_09441344_v24_n35_p27366_Ortiz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78383