Carbonic anhydrase inhibitor acetazolamide shifts synaptic vesicle recycling to a fast mode at the mouse neuromuscular junction

Acetazolamide (AZ), a molecule frequently used to treat different neurological syndromes, is an inhibitor of the carbonic anhydrase (CA), an enzyme that regulates pH inside and outside cells. We combined fluorescent FM styryl dyes and electrophysiological techniques at ex vivo levator auris longus n...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bertone, N.I
Otros Autores: Groisman, A.I, Mazzone, G.L, Cano, R., Tabares, L., Uchitel, O.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Inc. 2017
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 18359caa a22019337a 4500
001 PAPER-17414
003 AR-BaUEN
005 20230518204838.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85030125252 
024 7 |2 cas  |a acetazolamide, 1424-27-7, 59-66-5; bromophenol blue, 115-39-9; myosin light chain kinase, 51845-53-5; muscle relaxant agent, 9008-44-0; Acetazolamide; Carbonic Anhydrase Inhibitors; Cardiac Myosins; myosin light chain 2; Myosin Light Chains; Myosin-Light-Chain Kinase; Neuromuscular Agents 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a SYNAE 
100 1 |a Bertone, N.I. 
245 1 0 |a Carbonic anhydrase inhibitor acetazolamide shifts synaptic vesicle recycling to a fast mode at the mouse neuromuscular junction 
260 |b John Wiley and Sons Inc.  |c 2017 
270 1 0 |m Uchitel, O.D.; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad UniversitariaArgentina; email: ouchitel@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Alés, E., Tabares, L., Poyato, J.M., Valero, V., Lindau, M., Alvarez de Toledo, G., High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism (1999) Nature Cell Biology, 1 (1), pp. 40-44 
504 |a Alvarez de Toledo, G., Fernández-Chacón, R., Fernández, J.M., Release of secretory products during transient vesicle fusion (1993) Nature, 363 (6429), pp. 554-558 
504 |a Bagnato, F., Good, J., The use of antiepileptics in migraine prophylaxis (2016) Headache, 56 (3), pp. 603-615 
504 |a Betz, W.J., Bewick, G.S., Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction (1992) Science 10, 255 (5041), pp. 200-203 
504 |a Blumenthal, D.K., Stull, J.T., Effects of pH, ionic strength, and temperature on activation by calmodulin a catalytic activity of myosin light chain kinase (1982) Biochemistry, 21 (10), pp. 2386-2391 
504 |a Breckenridge, L.J., Almers, W., Currents through the fusion pore that forms during exocytosis of a secretory vesicle (1987) Nature, 328, pp. 814-817 
504 |a Bueno-Junior, L.S., Ruggiero, R.N., Rossignoli, M.T., Del Bel, E.A., Leite, J.P., Uchitel, O.D., Acetazolamide potentiates the afferent drive to prefrontal cortex in vivo (2017) Physiological Reports, 5 (1) 
504 |a Cano, R., Ruiz, R., Shen, C., Tabares, L., Betz, W.J., The functional landscape of a presynaptic nerve terminal (2012) Cell Calcium, 52 (3-4), pp. 321-326 
504 |a Ceccarelli, B., Hurlbut, W.P., Mauro, A., Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation (1972) The Journal of Cell Biology, 54, pp. 30-38 
504 |a Ceccarelli, B., Hurlbut, W.P., Mauro, A., Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction (1973) The Journal of Cell Biology, 57, pp. 499-524 
504 |a Davoust, J., Gruenberg, J., Howell, K.E., Two threshold values of low pH block endocytosis at different stages (1987) The Embo Journal, 6, pp. 3601-3609 
504 |a Dejonghe, W., Kuenen, S., Mylle, E., Vasileva, M., Keech, O., Viotti, C., Russinova, E., Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification (2016) Nature Communications, 7, p. 11710 
504 |a Fesce, R., Grohovaz, F., Valtorta, F., Meldolesi, J., Neurotransmitter release, fusion or ‘kiss and run’? (1994) Trends in Cell Biology, 4, pp. 1-4 
504 |a Gaffield, M.A., Tabares, L., Betz, W.J., The spatial pattern of exocytosis and post-exocytic mobility of synaptopHluorin in mouse motor nerve terminals (2009) J Physiol, 587 (6), pp. 1187-1200 
504 |a González-Forero, D., Montero, F., García-Morales, V., Domínguez, G., Gómez-Pérez, L., García-Verdugo, J.M., Moreno-López, B., Endogenous Rho-kinase signaling maintains synaptic strength by stabilizing the size of the readily releasable pool of synaptic vesicles (2012) The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32 (1), pp. 68-84 
504 |a Harata, N.C., Choi, S., Pyle, J.L., Aravanis, A.M., Tsien, R.W., Frequency dependent kinetics and prevalence of kiss and run and reuse at hippocampal synapses studied with novel quenching methods (2006) Neuron, 49 (2), pp. 243-256 
504 |a Heuser, J.E., Effects of cytoplasmic acidification on clathrin lattice morphology (1989) The Journal of Cell Biology, 108, pp. 401-411 
504 |a Heuser, J.E., Review of electron microscopic evidence favouring vesicle exocytosis as the structural basis for quantal release during synaptic transmission (1989) Quarterly Journal of Experimental Physiology, 74, pp. 1051-1069 
504 |a He, L., Wu, L.G., The debate on the kiss-and-run fusion at synapses (2007) Trends Neurosci, 30 (9), pp. 447-455 
504 |a Heuser, J.E., Reese, T.S., Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction (1973) The Journal of Cell Biology, 57, pp. 315-344 
504 |a Hogan, B., Constantini, F., Lacey, E., (1994) Manipulating the mouse embryo: A laboratory manual, , Cold Spring Harbor, NY, Cold Spring Harbor Laboratory 
504 |a Hoopmann, P., Rizzoli, S.O., Betz, W.J., Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes (2012) Cold Spring Harbor Protocols, 2012 (1), pp. 77-83. , 1 
504 |a Kaja, S., Frants, R.R., Ferrari, M.D., Van Den Maagdenberg, A.M., Plomp, J.J., Reduced ACh release at neuromuscular synapses of heterozygous leaner Ca(v)2.1-mutant mice (2008) Synapse (New York, N.Y.), 62 (5), pp. 337-344 
504 |a Kotagal, V., Acetazolamide-responsive ataxia (2012) Seminars in Neurology, 32 (5), pp. 533-537 
504 |a Kushmerick, C., Renden, R., Von, G.H., Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment (2006) Journal of Neuroscience, 26 (5), pp. 1366-1377 
504 |a Li, L., Wu, X., Yue, H.Y., Zhu, Y.C., Xu, J., Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons (2016) Journal of Neurochemistry, 138 (1), pp. 60-73 
504 |a Lindgren, C.A., Emery, D.G., Haydon, P.G., Intracellular acidification reversibly reduces endocytosis at the neuromuscular junction (1997) Journal of Neuroscience, 17, pp. 3074-3084 
504 |a Maeno-Hikichi, Y., Polo-Parada, L., Kastanenka, K.V., Landmesser, L.T., Frequency-dependent modes of synaptic vesicle endocytosis and exocytosis at adult mouse neuromuscular junctions (2011) The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31 (3), pp. 1093-1105 
504 |a Maren, T.H., Carbonic anhydrase: Chemistry, physiology, and inhibition (1967) Physiological Reviews, 47 (4), pp. 595-781 
504 |a McLachlan, E.M., Martin, A.R., Nonlinear summation of end-plate potentials in the frog and mouse (1981) The Journal of Physiology, 311, pp. 307-324 
504 |a Ogawa, M., Pharmacological treatments of cerebellar ataxia (2004) Cerebellum (London, England), 3 (2), pp. 107-111 
504 |a Perissinotti, P.P., Uchitel, O.D., Adenosine drives recycled vesicles to a slow-release pool at the mouse neuromuscular junction (2010) The European Journal of Neuroscience, 32 (6), pp. 985-996 
504 |a Polo-Parada, L., Bose, C.M., Landmesser, L.T., Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions (2001) Neuron, 32 (5), pp. 815-828 
504 |a Polo-Parada, L., Bose, C.M., Plattner, F., Landmesser, L.T., Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice (2004) Journal of Neuroscience, (8), pp. 1852-1864. , 25, 24 
504 |a Polo-Parada, L., Plattner, F., Bose, C., Landmesser, L.T., NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation (2005) Neuron, 46 (6), pp. 917-931 
504 |a Pyle, J.L., Kavalali, E.T., Piedras-Rentería, E.S., Tsien, R., Rapid reuse of readily releasable pool vesicles at hippocampal synapses (2000) Neuron, 28 (1), pp. 221-231 
504 |a Renden, R., von Gersdorff, H., Synaptic vesicle endocytosis at a CNS nerve terminal: Faster kinetics at physiological temperatures and increased endocytotic capacity during maturation (2007) Journal of Neurophysiology, 98 (6), pp. 3349-3359 
504 |a Ruiz, R., Cano, R., Casañas, J.J., Gaffield, M.A., Betz, W.J., Tabares, L., Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse (2011) Journal of Neuroscience, 31 (6), pp. 2000-2008 
504 |a Ruusuvuori, E., Kaila, K., Carbonic anhydrases and brain pH in the control of neuronal excitability (2014) Subcellular Biochemistry, 75, pp. 271-290 
504 |a Sandvig, K., Olsnes, S., Petersen, O.W., van Deurs, B., Acidification of the cytosol inhibits endocytosis from coated pits (1987) The Journal of Cell Biology, 105, pp. 679-689 
504 |a Shaeki, Y., De Camilli, P., Synaptic vesicle endocytosis (2012) Cold Spring Harbor Perspectives in Biology, 4 (9), p. a005645 
504 |a Srinivasan, G., Kim, J.H., von Gersdorff, H., The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse (2008) Journal of Neurophysiology, 99 (4), pp. 1810-1824 
504 |a Stevens, C.F., Williams, J.H., Kiss and run" exocytosis at hippocampal synapses (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (23), pp. 12828-12833 
504 |a Tabares, L., Ruiz, R., Linares-Clemente, P., Gaffield, M.A., Alvarez de Toledo, G., Fernandez-Chacon, R., Betz, W.J., Monitoring synaptic function at the neuromuscular junction of a mouse expressing synaptopHluorin (2007) Journal of Neuroscience, 27, pp. 5422-5430 
504 |a Wang, L.H., Südhof, T.C., Anderson, R.G., The appendage domain of alpha-adaptin is a high affinity binding site for dynamin (1995) The Journal of Biological Chemistry, 270, pp. 10079-10083 
504 |a Yue, H.Y., Xu, J., Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse (2014) The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34 (1), pp. 295-304 
504 |a Zhang, J., An, Y., Gao, J., Han, J., Pan, X., Pan, Y., Li, X., Aquaporin-1 translocation and degradation mediates the water transportation mechanism of acetazolamide (2012) Plos One, 7 (9) 
504 |a Zhang, Q., Li, Y., Tsien, R.W., The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles (2009) Science (New York, N.Y.), 323 (5920), pp. 1448-1453 
504 |a Zhang, Z., Nguyen, K.T., Barrett, E.F., David, G., Vesicular ATPase inserted into the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates endocytosis (2010) Neuron, 68 (6), pp. 1097-1108 
520 3 |a Acetazolamide (AZ), a molecule frequently used to treat different neurological syndromes, is an inhibitor of the carbonic anhydrase (CA), an enzyme that regulates pH inside and outside cells. We combined fluorescent FM styryl dyes and electrophysiological techniques at ex vivo levator auris longus neuromuscular junctions (NMJs) from mice to investigate the modulation of synaptic transmission and vesicle recycling by AZ. Transmitter release was minimally affected by AZ, as evidenced by evoked and spontaneous end-plate potential measurements. However, optical evaluation with FM-styryl dyes of vesicle exocytosis elicited by 50 Hz stimuli showed a strong reduction in fluorescence loss in AZ treated NMJ, an effect that was abolished by bathing the NMJ in Hepes. The remaining dye was quenched by bromophenol, a small molecule capable of diffusing inside vesicles. Furthermore, in transgenic mice expressing Synaptophysin-pHluorin (SypHy), the fluorescence responses of motor nerve terminals to a 50 Hz train of stimuli was decrease to a 50% of controls in the presence of AZ. Immunohistochemistry experiments to evaluate the state of the Myosin light chain kinase (MLCK), an enzyme involved in vesicle recycling, demonstrated that MLCK phosphorylation was much stronger in the presence than AZ than in its absence in 50 Hz stimulated NMJs. We postulate that AZ, via cytosol acidification and activation of MLCK, shifts synaptic vesicle recycling to a fast (kiss-and-run) mode, which changes synaptic performance. These changes may contribute to the therapeutic action reported in many neurological syndromes like ataxia, epilepsy, and migraine. © 2017 Wiley Periodicals, Inc.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT-2011–2667, PICT 2013–2202 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 01/Q666, 20020130100666BA 
536 |a Detalles de la financiación: Ministerio de Ciencia e Innovación 
536 |a Detalles de la financiación: BFU2013-43763-P 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, UBACYT 01/Q666, 20020130100666BA 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Ministerio de Ciencia e Innovación 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), Grant number: PICT 2013–2202, PICT-2011–2667; Universidad de Buenos Aires, Grant number: UBACYT 01/Q666 (20020130100666BA); Spanish Ministry of Science and Innovation, Grant number: (MINECO/FEDER) BFU2013-43763-P 
536 |a Detalles de la financiación: This work was supported by PICT 2013–2202 and PICT-2011–2667 from Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) and UBACYT 01/Q666 (20020130100666BA) from Universidad de Buenos Aires (to Dr. Uchitel), and from the Spanish Ministry of Science and Innovation (MINECO/FEDER) BFU2013–43763-P (to Dr. Tabares). The authors thank María Eugenia Martin for her invaluable technical assistance. The authors declare no competing financial interests 
593 |a Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina 
593 |a Laboratorios de Investigación aplicada en Neurociencias (LIAN)—Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), CONICET, Buenos Aires, Argentina 
593 |a Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, 41009, Spain 
690 1 0 |a BROMOPHENOL 
690 1 0 |a ENDOCYTOSIS 
690 1 0 |a ENDPLATE POTENTIALS 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a FM STYRYL DYES 
690 1 0 |a MYOSIN LIGHT CHAIN KINASE 
690 1 0 |a SYNAPTOPHYSIN-PHLUORIN 
690 1 0 |a TRANSMITTER RELEASE 
690 1 0 |a ACETAZOLAMIDE 
690 1 0 |a BROMOPHENOL BLUE 
690 1 0 |a DYE 
690 1 0 |a MYOSIN LIGHT CHAIN KINASE 
690 1 0 |a ACETAZOLAMIDE 
690 1 0 |a CARBONATE DEHYDRATASE INHIBITOR 
690 1 0 |a CARDIAC MYOSIN 
690 1 0 |a MUSCLE RELAXANT AGENT 
690 1 0 |a MYOSIN LIGHT CHAIN 
690 1 0 |a MYOSIN LIGHT CHAIN 2 
690 1 0 |a MYOSIN LIGHT CHAIN KINASE 
690 1 0 |a ACIDIFICATION 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ENDPLATE POTENTIAL 
690 1 0 |a ENZYME ACTIVATION 
690 1 0 |a ENZYME PHOSPHORYLATION 
690 1 0 |a EVOKED RESPONSE 
690 1 0 |a EX VIVO STUDY 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a FLUORESCENCE ANALYSIS 
690 1 0 |a IMMUNOHISTOCHEMISTRY 
690 1 0 |a MALE 
690 1 0 |a MOTOR END PLATE 
690 1 0 |a MOUSE 
690 1 0 |a NEUROMUSCULAR JUNCTION 
690 1 0 |a NEUROTRANSMITTER RELEASE 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SYNAPSE VESICLE 
690 1 0 |a SYNAPTIC TRANSMISSION 
690 1 0 |a ANIMAL 
690 1 0 |a C57BL MOUSE 
690 1 0 |a CYTOLOGY 
690 1 0 |a CYTOSOL 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a MEMBRANE POTENTIAL 
690 1 0 |a METABOLISM 
690 1 0 |a NEUROMUSCULAR JUNCTION 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a SYNAPSE VESICLE 
690 1 0 |a TRANSGENIC MOUSE 
690 1 0 |a ACETAZOLAMIDE 
690 1 0 |a ANIMALS 
690 1 0 |a CARBONIC ANHYDRASE INHIBITORS 
690 1 0 |a CARDIAC MYOSINS 
690 1 0 |a CYTOSOL 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a MALE 
690 1 0 |a MEMBRANE POTENTIALS 
690 1 0 |a MICE, INBRED C57BL 
690 1 0 |a MICE, TRANSGENIC 
690 1 0 |a MYOSIN LIGHT CHAINS 
690 1 0 |a MYOSIN-LIGHT-CHAIN KINASE 
690 1 0 |a NEUROMUSCULAR AGENTS 
690 1 0 |a NEUROMUSCULAR JUNCTION 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a SYNAPTIC VESICLES 
650 1 7 |2 spines  |a PH 
700 1 |a Groisman, A.I. 
700 1 |a Mazzone, G.L. 
700 1 |a Cano, R. 
700 1 |a Tabares, L. 
700 1 |a Uchitel, O.D. 
773 0 |d John Wiley and Sons Inc., 2017  |g v. 71  |k n. 12  |p Synapse  |x 08874476  |t Synapse 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030125252&doi=10.1002%2fsyn.22009&partnerID=40&md5=e9d2c88f65f5b255eddd6f1be791e094  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/syn.22009  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08874476_v71_n12_p_Bertone  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08874476_v71_n12_p_Bertone  |y Registro en la Biblioteca Digital 
961 |a paper_08874476_v71_n12_p_Bertone  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78367