Thermal-specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster

Fitness-related traits are often affected by temperature. Heat-resistant genotypes could influence the dependence of fitness traits on temperature, which should be important in adaptation to directional changes in temperature including global warming. Here, we tested temperature-dependent variation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Stazione, L.
Otros Autores: Norry, F.M, Sambucetti, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15140caa a22012857a 4500
001 PAPER-17384
003 AR-BaUEN
005 20230518204835.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85040714801 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ETEAA 
100 1 |a Stazione, L. 
245 1 0 |a Thermal-specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster 
260 |b Blackwell Publishing Ltd  |c 2017 
270 1 0 |m Sambucetti, P.; Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – IEGEBA (CONICET-UBA), (C-1428-EHA), Argentina; email: pablosambucetti@ege.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arias, L.N., Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Survival to heat stress with and without heat-hardening in Drosophila melanogaster: interactions with larval density (2012) Journal of Experimental Biology, 215, pp. 2220-2225 
504 |a Bates, D., Maechler, M., Bolker, B., Walker, S., (2013) lme4: Linear mixed-effects models using Eigen and S4. R package v.1.0-5, , http://CRAN.R-project.org/package=lme4, &, (accessed 15 March 2016) 
504 |a Bowler, K., Terblanche, J.S., Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? (2008) Biological Reviews, 83, pp. 339-355 
504 |a Bozinovic, F., Bastias, D.A., Boher, F., Clavijo-Baquet, S., Estay, S.A., Angilletta, M.J., The mean and variance of environmental temperature interact to determine physiological tolerance and fitness (2011) Physiological and Biochemical Zoology, 84, pp. 543-552 
504 |a Defays, R., Gomez, F.H., Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster (2011) Experimental Gerontology, 46, pp. 819-826 
504 |a Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., (2014) InfoStat v.2014, , http://www.infostat.com.ar, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina, (accessed 15 March 2016) 
504 |a Flatt, T., Survival costs of reproduction in Drosophila (2011) Experimental Gerontology, 46, pp. 369-375 
504 |a Gomez, F.H., Bertoli, C.I., Sambucetti, P., Scannapieco, A.C., Norry, F.M., Heat-induced hormesis in longevity as correlated response to thermal-stress selection in Drosophila buzzatii (2009) Journal of Thermal Biology, 34, pp. 17-22 
504 |a Highfill, C.A., Reeves, G.A., Macdonald, S.J., Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population (2016) BMC Genetics, 17, p. 113 
504 |a Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216 
504 |a Huey, R.B., Wakefield, T., Crill, W.C., Gilchrist, G.W., Within and between generation effects of temperature on early fecundity of Drosophila melanogaster (1995) Heredity, 74, pp. 216-223 
504 |a Kellermann, V., van Heerwaarden, B., Sgrò, C.M., Hoffmann, A.A., Fundamental evolutionary limits in ecological traits drive Drosophila species distributions (2009) Science, 325, pp. 1244-1246 
504 |a Kellermann, V., Overgaarda, J., Hoffmann, A.A., Fløjgaarda, C., Svenninga, J.-C., Loeschcke, V., Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically (2012) Proceedings of the National Academy of Sciences of the USA, 109, pp. 16228-16233 
504 |a Kengeri, S.S., Maras, A.H., Suckow, C.L., Chiang, E.C., Waters, D.J., Exceptional longevity in female rottweiler dogs is not encumbered by investment in reproduction (2013) Age, 35, pp. 2503-2513 
504 |a Khazaeli, A.A., Curtsinger, J.W., Pleiotropy and life history evolution in Drosophila melanogaster: uncoupling life span and early fecundity (2013) Journal of Gerontology Series A, 68, pp. 546-553 
504 |a Klepsatel, P., Gáliková, M., De Maio, N., Huber, C.D., Schlötterer, C., Flatt, T., Variation in thermal performance and reaction norms among populations of Drosophila melanogaster (2013) Evolution, 67, pp. 3573-3587 
504 |a Le Bourg, E., Does reproduction decrease longevity in human beings? (2007) Ageing Research Review, 6, pp. 141-149 
504 |a Loeschcke, V., Kristensen, T.N., Norry, F.M., Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster (2011) Journal of Insect Physiology, 57, pp. 1227-1231 
504 |a Luckinbill, L.S., Arking, R., Clare, M.J., Cirocco, W.C., Buck, S.A., Selection for delayed senescence in Drosophila melanogaster (1984) Evolution, 38, pp. 996-1003 
504 |a Manenti, T., Sørensen, J.G., Moghadam, N.N., Loeschcke, V., Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes (2016) Heredity, 117, pp. 149-154 
504 |a Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242 
504 |a Norry, F.M., Loeschcke, V., Temperature-induced shifts in associations of longevity with body size in Drosophila melanogaster (2002) Evolution, 56, pp. 299-306 
504 |a Norry, F.M., Loeschcke, V., Heat-induced expression of a molecular chaperone decreases by selecting for long-lived individuals (2003) Experimental Gerontology, 38, pp. 673-681 
504 |a Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Molecular Ecology, 13, pp. 3585-3594 
504 |a Norry, F.M., Gomez, F.H., Loeschcke, V., Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a central region of chromosome 2 in Drosophila melanogaster (2007) Molecular Ecology, 16, pp. 3274-3284 
504 |a Norry, F.M., Sambucetti, P., Scannapieco, A.C., Gomez, F.H., Loeschcke, V., X-linked QTL for knockdown resistance to high temperature in Drosophila melanogaster (2007) Insect Molecular Biology, 16, pp. 509-513 
504 |a Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., Quantitative trait loci for heat-hardening acclimation, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Molecular Ecology, 17, pp. 4570-4581 
504 |a Norry, F.M., Larsen, P.F., Liu, Y., Loeschcke, V., Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster (2009) Journal of Insect Physiology, 55, pp. 1050-1057 
504 |a Paaby, A.B., Schmidt, P.S., Dissecting the genetics of longevity in Drosophila melanogaster (2009) Fly, 3, pp. 29-38 
504 |a Partridge, L., Gems, D., Withers, D.J., Sex and death: what is the connection? (2005) Cell, 120, pp. 461-472 
504 |a Pletcher, S.D., Model fitting and hypothesis testing for age-specific mortality data (1999) Journal of Experimental Biology, 12, pp. 430-439 
504 |a (2015) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing, Vienna, Austria 
504 |a Rand, D.M., Weinreich, D.M., Lerman, D., Folk, D., Gilchrist, G.W., Three selections are better than one: clinical variation of thermal QTL from independent selection experiments in Drosophila (2010) Evolution, 64, pp. 2921-2934 
504 |a Rice, W.R., Analyzing tables of statistical tests (1989) Evolution, 43, pp. 223-225 
504 |a Rodriguez, M., Snoek, L.B., Riksen, J.A.G., Bevers, R.P., Kammenga, J.E., Genetic variation for stress-response hormesis in C. elegans lifespan (2012) Experimental Gerontology, 47, pp. 581-587 
504 |a Rose, M.R., Laboratory evolution of postponed senescence in Drosophila melanogaster (1984) Evolution, 38, pp. 1004-1010 
504 |a Rose, M.R., Genetics of aging in Drosophila (1999) Experimental Gerontology, 34, pp. 577-585 
504 |a Rose, M.R., Charlesworth, B., A test of evolutionary theories of senescence (1980) Nature, 287, pp. 141-142 
504 |a Sambucetti, P., Norry, F.M., Mating success at high temperature in highland- and lowland-derived populations as well as in heat knock-down selected Drosophila buzzatii (2015) Entomologia Experimentalis et Applicata, 154, pp. 206-212 
504 |a Sambucetti, P., Sørensen, J.G., Loeschcke, V., Norry, F.M., Variation in senescence and associated traits between sympatric cactophilic sibling species of Drosophila (2005) Evolutionary Ecology Research, 7, pp. 915-930 
504 |a Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Heat-stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2013) Journal of Experimental Biology, 216, pp. 2953-2959 
504 |a Sambucetti, P., Loeschcke, V., Norry, F.M., Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster (2015) Biogerontology, 16, pp. 801-810 
504 |a Scannapieco, A.C., Sambucetti, P., Norry, F.M., Direct and correlated responses to selection for longevity in Drosophila buzzatii (2009) Biological Journal of the Linnean Society of London, 97, pp. 738-748 
504 |a Sgrò, C.M., Hoffmann, A.A., Genetic correlations, tradeoffs and environmental variation (2004) Heredity, 93, pp. 241-248 
504 |a Tarin, J.J., Gómez-Piquer, V., García-Palomares, S., García-Pérez, M.A., Cano, A., Absence of long-term effects of reproduction on longevity in the mouse model (2014) Reproductive Biology and Endocrinology, 12, p. 84 
504 |a Vanin, S., Bhutani, S., Montelli, S., Menegazzi, P., Green, E.W., Unexpected features of Drosophila circadian behavioural rhythms under natural conditions (2012) Nature, 484, pp. 371-375 
504 |a Vieira, C., Pasyukova, E.G., Zeng, Z.B., Hackett, J.B., Lyman, R.F., Mackay, T.F.C., Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster (2000) Genetics, 154, pp. 213-227 
504 |a Wang, M.H., Lazebny, O., Harshman, L.G., Nuzhdin, S.V., Environment-dependent survival of Drosophila melanogaster: a quantitative genetic analysis (2004) Aging Cell, 3, pp. 133-140 
504 |a Williams, G.C., Natural selection, the costs of reproduction and a refinement of Lack's principle (1966) American Naturalist, 100, pp. 687-690 
504 |a Wit, J., Sarup, P., Lupsa, N., Malte, H., Frydenberg, J., Loeschcke, V., Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span (2013) Experimental Gerontology, 48, pp. 349-357 
504 |a Zwaan, B., Bijlsma, R., Hoekstra, R.F., Direct selection on life span in Drosophila melanogaster (1995) Evolution, 49, pp. 649-659 
520 3 |a Fitness-related traits are often affected by temperature. Heat-resistant genotypes could influence the dependence of fitness traits on temperature, which should be important in adaptation to directional changes in temperature including global warming. Here, we tested temperature-dependent variation in longevity and fecundity between Drosophila melanogaster Meigen (Diptera: Drosophilidae) genotypes that differ in heat-resistance QTL. Longevity and fecundity were affected by heat-resistance genotypes at constant moderate and high temperature. However, these differences between heat-resistant and heat-sensitive genotypes disappeared in a cyclic thermal regime. Analysis with the logistic mortality function indicated that mortality patterns are dependent on temperature and genotype. The results suggest that genotype*temperature interactions are substantial for senescence-related traits. In particular, fluctuating temperatures can drastically reduce any differences in life-history traits between heat-resistance genotypes, even if such genotypes differentially affect the traits at constant temperatures. © 2017 The Netherlands Entomological Society  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: We thank Volker Loeschcke for earlier collaborations with the setup of RILs and two anonymous reviewers for helpful comments on the manuscript. This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and grants from CONICET and Agencia Nacional de Promoción Científica y Tecnológica to FMN and Universidad de Buenos Aires (UBACYT) to FMN and PS. 
593 |a Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – IEGEBA (CONICET-UBA), (C-1428-EHA), Buenos Aires, Argentina 
690 1 0 |a ANTAGONISTIC PLEIOTROPY 
690 1 0 |a CYCLIC THERMAL REGIMEN 
690 1 0 |a DIPTERA 
690 1 0 |a DROSOPHILIDAE 
690 1 0 |a HEAT SENSITIVITY 
690 1 0 |a QUANTITATIVE TRAIT LOCI 
690 1 0 |a SENESCENCE 
690 1 0 |a ADAPTATION 
690 1 0 |a FECUNDITY 
690 1 0 |a FITNESS 
690 1 0 |a FLY 
690 1 0 |a GENETIC MARKER 
690 1 0 |a GENOTYPE 
690 1 0 |a GLOBAL WARMING 
690 1 0 |a HIGH TEMPERATURE 
690 1 0 |a LIFE HISTORY TRAIT 
690 1 0 |a LONGEVITY 
690 1 0 |a MORTALITY 
690 1 0 |a PLEIOTROPY 
690 1 0 |a SENESCENCE 
690 1 0 |a TEMPERATURE EFFECT 
690 1 0 |a THERMAL REGIME 
690 1 0 |a DIPTERA 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a DROSOPHILIDAE 
700 1 |a Norry, F.M. 
700 1 |a Sambucetti, P. 
773 0 |d Blackwell Publishing Ltd, 2017  |g v. 165  |h pp. 159-168  |k n. 2-3  |p Entomol. Exp. Appl.  |x 00138703  |w (AR-BaUEN)CENRE-4591  |t Entomologia Experimentalis et Applicata 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040714801&doi=10.1111%2feea.12630&partnerID=40&md5=ed2e501974194e0bd0b8bf9c6a418ccc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/eea.12630  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00138703_v165_n2-3_p159_Stazione  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00138703_v165_n2-3_p159_Stazione  |y Registro en la Biblioteca Digital 
961 |a paper_00138703_v165_n2-3_p159_Stazione  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78337