Determination of any pure spatial qudits from a minimum number of measurements by phase-stepping interferometry

We present a proof-of-principle demonstration of a method to characterize any pure spatial qudit of arbitrary dimension d, which is based on the classic phase-shift interferometry technique. In the proposed scheme a total of only 4d measurement outcomes are needed, implying a significant reduction w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pears Stefano, Q.
Otros Autores: Rebón, Lorena, Ledesma, Silvia Adriana, Iemmi, Claudio César
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Physical Society 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07602caa a22008777a 4500
001 PAPER-17366
003 AR-BaUEN
005 20250905101830.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85039860304 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Pears Stefano, Q. 
245 1 0 |a Determination of any pure spatial qudits from a minimum number of measurements by phase-stepping interferometry 
260 |b American Physical Society  |c 2017 
504 |a Paris, M., Rehacek, J., (2010) Quantum State Estimation, , 1st ed. (Springer, New York) 
504 |a James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G., (2001) Phys. Rev. A, 64, p. 052312 
504 |a Thew, R.T., Nemoto, K., White, A.G., Munro, W.J., (2002) Phys. Rev. A, 66, p. 012303 
504 |a Wootters, W.K., Fields, B.D., (1989) Ann. Phys., 191, p. 363 
504 |a Adamson, R.B.A., Steinberg, A.M., (2010) Phys. Rev. Lett., 105, p. 030406 
504 |a Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N., (2002) Phys. Rev. Lett., 88, p. 127902 
504 |a Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S., (2002) Phys. Rev. Lett., 88, p. 040404 
504 |a Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A., (2006) New J. Phys., 8, p. 75 
504 |a Dixon, P.B., Howland, G.A., Schneeloch, J., Howell, J.C., (2012) Phys. Rev. Lett., 108, p. 143603 
504 |a Lee, H.J., Choi, S.-K., Park, H.S., (2017) Sci. Rep., 7, p. 4302 
504 |a Gross, D., Liu, Y.-K., Flammia, S.T., Becker, S., Eisert, J., (2010) Phys. Rev. Lett., 105, p. 150401 
504 |a Riofrío, C., Gross, D., Flammia, S., Monz, T., Nigg, D., Blatt, R., Eisert, J., (2017) Nat. Commun., 8, p. 15305 
504 |a Flammia, S.T., Silberfarb, A., Caves, C.M., (2005) Found. Phys., 35, p. 1985 
504 |a Heinosaari, T., Mazzarella, L., Wolf, M.M., (2013) Commun. Math. Phys., 318, p. 355 
504 |a Carmeli, C., Heinosaari, T., Schultz, J., Toigo, A., (2015) Europhys. J. D, 69, p. 179 
504 |a Goyeneche, D., Cañas, G., Etcheverry, S., Gómez, E.S., Xavier, G.B., Lima, G., Delgado, A., (2015) Phys. Rev. Lett., 115, p. 090401 
504 |a Neves, L., Pádua, S., Saavedra, C., (2004) Phys. Rev. A, 69, p. 042305 
504 |a Creath, K., (1988) Prog. Opt., 26, p. 349 
504 |a Rebón, L., Iemmi, C., Ledesma, S., (2013) Optik, 124, p. 5548 
504 |a Neves, L., Lima, G., Aguirre Gómez, J.G., Monken, C.H., Saavedra, C., Pádua, S., (2005) Phys. Rev. Lett., 94, p. 100501 
504 |a Lima, G., Vargas, A., Neves, L., Guzmán, R., Saavedra, C., (2009) Opt. Express, 17, p. 10688 
504 |a Krishnaswami, V., Van Noorden, C.J.F., Manders, E.M.M., Hoebe, R.A., (2014) Opt. Nanoscopy, 3, p. 1 
504 |a Leach, J., Padgett, M.J., Barnett, S.M., Franke-Arnold, S., Courtial, J., (2002) Phys. Rev. Lett., 88, p. 257901 
504 |a Lima, G., Neves, L., Guzmán, R., Gómez, E.S., Nogueira, W.A.T., Delgado, A., Vargas, A., Saavedra, C., (2011) Opt. Express, 19, p. 3542 
504 |a Malik, M., Mirhosseini, M., Lavery, M., Leach, J., Padgett, M., Boyd, R., (2014) Nat. Commun., 5, p. 3115 
504 |a Solís-Prosser, M.A., Arias, A., Varga, J.J.M., Rebón, L., Ledesma, S., Iemmi, C., Neves, L., (2013) Opt. Lett., 38, p. 4762 
504 |a Varga, J.J.M., Rebón, L., Solís-Prosser, M.A., Neves, L., Ledesma, S., Iemmi, (2014) J. Phys. B, 47, p. 225504 
504 |a Leach, J., Warburton, R., Murugkar, S., Edgar, M., Padgett, M., Boyd, R., (2011) International Conference on Quantum Information, p. PDPA1. , (OSA Publishing, Washington D.C.) 
504 |a Fickler, R., Krenn, M., Lapkiewicz, R., Ramelow, S., Zeilinger, A., (2013) Sci. Rep., 3, p. 1914 
504 |a Unternährer, M., Bessire, B., Gasparini, L., Stoppa, D., Stefanov, A., (2016) Opt. Express, 24, p. 28829 
504 |a Jozsa, R., (1994) J. Mod. Opt., 41, p. 2315 
506 |2 openaire  |e Política editorial 
520 3 |a We present a proof-of-principle demonstration of a method to characterize any pure spatial qudit of arbitrary dimension d, which is based on the classic phase-shift interferometry technique. In the proposed scheme a total of only 4d measurement outcomes are needed, implying a significant reduction with respect to the standard schemes for quantum-state tomography which require on the order of d2. By using this technique, we have experimentally reconstructed a large number of states ranging from d=2 up to 14 with mean fidelity values higher than 0.97. For that purpose the qudits were codified in the discretized transverse-momentum position of single photons, once they are sent through an aperture with d slits. We provide an experimental implementation of the method based in a Mach-Zehnder interferometer, which allows one to reduce the number of measurement settings to four since the d slits can be measured simultaneously. Furthermore, it can be adapted to consider the reconstruction of the unknown state from the outcome frequencies of 4d-3 fixed projectors independently of the encoding or the nature of the quantum system, allowing one to implement the reconstruction method in a general experiment. © 2017 American Physical Society.  |l eng 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020130100727BA 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220150100475CO 
536 |a Detalles de la financiación: We express our gratitude to C. T. Schmiegelow for providing us with the sCMOS camera. This work was supported by UBACyT Grant No. 20020130100727BA, CONICET Grant No. PIP 11220150100475CO, and ANPCYT Grant No. PICT 2014/2432. Q.P.S. was supported by a CONICET Fellowship. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, 1428, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1425, Argentina 
593 |a Departamento de Física, IFLP-CONICET, Universidad Nacional de la Plata, C.C. 67, La Plata, 1900, Argentina 
690 1 0 |a QUANTUM OPTICS 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a 4-D MEASUREMENTS 
690 1 0 |a ARBITRARY DIMENSION 
690 1 0 |a PHASE SHIFT INTERFEROMETRY 
690 1 0 |a PHASE-STEPPING INTERFEROMETRY 
690 1 0 |a PROOF OF PRINCIPLES 
690 1 0 |a QUANTUM STATE TOMOGRAPHY 
690 1 0 |a RECONSTRUCTION METHOD 
690 1 0 |a TRANSVERSE MOMENTA 
690 1 0 |a INTERFEROMETRY 
700 1 |a Rebón, Lorena 
700 1 |a Ledesma, Silvia Adriana 
700 1 |a Iemmi, Claudio César 
773 0 |d American Physical Society, 2017  |g v. 96  |k n. 6  |p Phys. Rev. A  |x 24699926  |t Physical Review A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039860304&doi=10.1103%2fPhysRevA.96.062328&partnerID=40&md5=4d78b971cf1f31104694afe2516d37d5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevA.96.062328  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_24699926_v96_n6_p_PearsStefano  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v96_n6_p_PearsStefano  |y Registro en la Biblioteca Digital 
961 |a paper_24699926_v96_n6_p_PearsStefano  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78319