Continuity results with respect to domain perturbation for the fractional p-Laplacian

In this paper, we give sufficient conditions on the approximating domains in order to obtain the continuity of solutions for the fractional p-Laplacian. These conditions are given in terms of the fractional capacity of the approximating domains. © 2017 Elsevier Ltd

Guardado en:
Detalles Bibliográficos
Autor principal: Baroncini, C.
Otros Autores: Fernández Bonder, J., Spedaletti, J.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06654caa a22007097a 4500
001 PAPER-17337
003 AR-BaUEN
005 20230518204832.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85024877424 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a AMLEE 
100 1 |a Baroncini, C. 
245 1 0 |a Continuity results with respect to domain perturbation for the fractional p-Laplacian 
260 |b Elsevier Ltd  |c 2018 
270 1 0 |m Fernández Bonder, J.; Departamento de Matemática FCEN - Universidad de Buenos Aires and IMAS - CONICET. Ciudad Universitaria, Pabellón I (C1428EGA) Av. Cantilo 2160. Buenos Aires, Argentina; email: jfbonder@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints (2012) SIAM Rev., 54 (4), pp. 667-696 
504 |a Eringen, A.C., Nonlocal Continuum Field Theories (2002), Springer-Verlag, New York; Giacomin, G., Lebowitz, J.L., Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits (1997) J. Stat. Phys., 87 (1-2), pp. 37-61 
504 |a Laskin, N., Fractional quantum mechanics and Lévy path integrals (2000) Phys. Lett. A, 268 (4-6), pp. 298-305 
504 |a Metzler, R., Klafter, J., The random walk's guide to anomalous diffusion: a fractional dynamics approach (2000) Phys. Rep., 339 (1), p. 77 
504 |a Zhou, K., Du, Q., Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions (2010) SIAM J. Numer. Anal., 48 (5), pp. 1759-1780 
504 |a Akgiray, V., Booth, G.G., The siable-law model of stock returns (1988) J. Bus. Econ. Stat., 6 (1), pp. 51-57 
504 |a Levendorski, S., Pricing of the American put under Lévy processes (2004) Int. J. Theor. Appl. Finance, 7 (3), pp. 303-335 
504 |a Schoutens, W., Lévy processes in finance: pricing financial derivatives (2003) Wiley Series in Probability and Statistics, , Wiley, New York 
504 |a Constantin, P., Euler equations, Navier-Stokes equations and turbulence (2006) Mathematical Foundation of Turbulent Viscous Flows, Lecture Notes in Math., 1871, pp. 1-43. , Springer, Berlin 
504 |a Humphries et al., N., Environmental context explains Lévy and Brownian movement patterns of marine predators (2010) Nature, 465, pp. 1066-1069 
504 |a Massaccesi, A., Valdinoci, E., Is a nonlocal diffusion strategy convenient for biological populations in competition? (2015) ArXiv E-Prints 
504 |a Reynolds, A.M., Rhodes, C.J., The lvy flight paradigm: random search patterns and mechanisms (2009) Ecology, 90 (4), pp. 877-887 
504 |a Gilboa, G., Osher, S., Nonlocal operators with applications to image processing (2008) Multiscale Model. Simul., 7 (3), pp. 1005-1028 
504 |a Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573 
504 |a Demengel, F., Demengel, G., Functional Spaces for the Theory of Elliptic Partial Differential Equations (2012) Universitext, , Springer, London; EDP Sciences, Les Ulis Translated from the 2007 French original by Reinie Erné 
504 |a Šverák, V., On optimal shape design (1993) J. Math. Pures Appl. (9), 72 (6), pp. 537-551 
504 |a Cioranescu, D., Murat, F., A strange term coming from nowhere [MR0652509 (84e:35039a); MR0670272 (84e:35039b)] (1997) Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl., 31, pp. 45-93. , Birkhäuser Boston Boston, MA 
504 |a Focardi, M., Aperiodic fractional obstacle problems (2010) Adv. Math., 225 (6), pp. 3502-3544 
504 |a Henrot, A., Pierre, M., Variation et optimisation de formes (2005) Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 48, , Springer Berlin Une analyse géométrique. [A geometric analysis] 
504 |a Warma, M., The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets (2015) Potential Anal., 42 (2), pp. 499-547 
504 |a Evans, L.C., Gariepy, R.F., Measure theory and fine properties of functions (1992) Studies in Advanced Mathematics, , CRC Press Boca Raton, FL 
504 |a Ekeland, I., Temam, R., Convex Analysis and Variational Problems (1976), North-Holland Publishing Co. Amsterdam Translated from the French, Studies in Mathematics and its Applications, Vol. 1 
520 3 |a In this paper, we give sufficient conditions on the approximating domains in order to obtain the continuity of solutions for the fractional p-Laplacian. These conditions are given in terms of the fractional capacity of the approximating domains. © 2017 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2012-0153 
536 |a Detalles de la financiación: This paper was partially supported by grants UBACyT20020130100283BA, CONICET PIP11220150100032CO and ANPCyT PICT 2012-0153. 
593 |a Departamento de Matemática FCEN - Universidad de Buenos Aires and IMAS - CONICET. Ciudad Universitaria, Pabellón I (C1428EGA) Av. Cantilo 2160. Buenos Aires, Argentina 
593 |a Departamento de Matemática, Universidad Nacional de San Luis and IMASL - CONICET. Ejército de los Andes 950 (D5700HHW), San Luis, Argentina 
690 1 0 |a DOMAIN PERTURBATION 
690 1 0 |a FRACTIONAL CAPACITY 
690 1 0 |a FRACTIONAL P-LAPLACIAN 
690 1 0 |a MATHEMATICAL TECHNIQUES 
690 1 0 |a DOMAIN PERTURBATION 
690 1 0 |a FRACTIONAL CAPACITY 
690 1 0 |a P-LAPLACIAN 
690 1 0 |a LAPLACE TRANSFORMS 
700 1 |a Fernández Bonder, J. 
700 1 |a Spedaletti, J.F. 
773 0 |d Elsevier Ltd, 2018  |g v. 75  |h pp. 59-67  |p Appl Math Lett  |x 08939659  |t Applied Mathematics Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85024877424&doi=10.1016%2fj.aml.2017.06.005&partnerID=40&md5=82964447c2992f792c77fc16692488b8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.aml.2017.06.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08939659_v75_n_p59_Baroncini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08939659_v75_n_p59_Baroncini  |y Registro en la Biblioteca Digital 
961 |a paper_08939659_v75_n_p59_Baroncini  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78290