Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties

A two-dimensional model of the non-equilibrium unipolar discharge occurring in the plasma–sheath boundary region of a transferred-arc was developed. This model was used to study the current transfer to the nozzle (1 mm diameter) of a 30 A arc cutting torch operated with oxygen. The energy balance an...

Descripción completa

Detalles Bibliográficos
Autor principal: Mancinelli, B.
Otros Autores: Prevosto, L., Chamorro, Juan Camilo, Minotti, F.O, Kelly, H.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13909caa a22016217a 4500
001 PAPER-17301
003 AR-BaUEN
005 20241209092715.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85032987512 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Mancinelli, B. 
245 1 0 |a Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties 
260 |b Springer New York LLC  |c 2018 
270 1 0 |m Prevosto, L.; Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto, Universidad Tecnológica Nacional, CONICET, Laprida 651, Argentina; email: prevosto@waycom.com.ar 
504 |a Riemann, K.U., (1991) J Phys D Appl Phys, 24, pp. 493-518 
504 |a Riemann, K.U., (2003) J Phys D Appl Phys, 36, pp. 2811-2820. , COI: 1:CAS:528:DC%2BD3sXpsV2ltbk%3D 
504 |a Franklin, R.N., (2003) J Phys D Appl Phys, 36, pp. R309-R320. , COI: 1:CAS:528:DC%2BD3sXpsV2ltb4%3D 
504 |a Franklin, R.N., (2003) J Phys D Appl Phys, 36, pp. 2821-2824. , COI: 1:CAS:528:DC%2BD3sXpsV2ltbY%3D 
504 |a Franklin, R.N., (2004) J Phys D Appl Phys, 37, pp. 1342-1345. , COI: 1:CAS:528:DC%2BD2cXktFemtLw%3D 
504 |a Benilov, M.S., (2009) Plasma Sources Sci Technol, 18, p. 014005 
504 |a Brinkmann, R.P., (2011) J Phys D Appl Phys, 44, p. 042002 
504 |a Hill, R.J., Jones, G.R., (1979) J Phys D Appl Phys, 12, pp. 1707-1720 
504 |a George, D.W., Richards, P.H., (1968) Brit J Appl Phys, 1, pp. 1171-1182 
504 |a Nemchinsky, V.A., Severance, W.S., (2006) J Phys D Appl Phys, 39, pp. R423-R438. , COI: 1:CAS:528:DC%2BD28XhtlSjtLnL 
504 |a Boulos, M., Fauchais, P., Pfender, E., (1994) Thermal plasmas, fundamentals and applications, 1. , Plenum Press, New York 
504 |a Prevosto, L., Kelly, H., Mancinelli, B., (2009) J Appl Phys, 105, p. 013309 
504 |a Prevosto, L., Kelly, H., Mancinelli, B., (2011) J Appl Phys, 110, p. 083302 
504 |a Gielen, H.J.G., Schram, D.C., (1990) IEEE Trans Plasma Sci, 18, pp. 127-133 
504 |a Insepov, Z., Norem, J., (2013) J Vac Sci Technol, A, 31, p. 011302 
504 |a Nemchinsky, V.A., (2009) J Phys D Appl Phys, 42, p. 205209 
504 |a Mancinelli, B., Minotti, F.O., Prevosto, L., Kelly, H., (2014) J Appl Phys, 116, p. 023301 
504 |a Prevosto, L., Kelly, H., Mancinelli, B., (2009) J Appl Phys, 105, p. 123303 
504 |a Prevosto, L., Mancinelli, B., Kelly, H., (2008) Phys Scr, T131, p. 014026 
504 |a Boeuf, J.P., Pitchford, L.C., (1995) Phys Rev E, 51, pp. 1376-1390. , COI: 1:CAS:528:DyaK2MXjslWrtbo%3D 
504 |a Sheridan, T.E., Goree, J., (1991) Phys Fluids B, 10, pp. 2796-2804 
504 |a Raizer, Y.P., (1991) Gas discharge physics, , Springer, Berlin 
504 |a Rafatov, I., Bogdanov, E.A., Kudryavtsev, A.A., (2012) Phys Plasmas, 19, p. 033502 
504 |a Chen, G., Raja, L.L., (2004) J Appl Phys, 96, pp. 6073-6081. , COI: 1:CAS:528:DC%2BD2cXhtValur%2FO 
504 |a Hagelaar, G.J.M., Pitchford, L.C., (2005) Plasma Sources Sci Technol, 14, pp. 722-733. , COI: 1:CAS:528:DC%2BD2MXhtlGiu73M 
504 |a Aleksandrov, N.L., Kindysheva, S.V., Nudnova, M.M., Starikovskiy, A.Y., (2010) J Phys D Appl Phys, 43, p. 255201 
504 |a Popov, N.A., (2001) Plasma Phys Rep, 27, pp. 886-896 
504 |a Popov, N.A., (2011) J Phys D Appl Phys, 44, p. 285201 
504 |a Mintoussov, E.I., Pendleton, S.J., Gerbault, F.G., Popov, N.A., Starikovskaia, S.M., (2011) J Phys D Appl Phys, 44, p. 285202 
504 |a Pintassilgo, C.D., Guerra, V., (2015) Plasma Sources Sci Technol, 24, p. 055009 
504 |a Krishnakumar, E., Srivastava, S.K., (1992) Int J Mass Spectrom Ion Proc, 113, pp. 1-12. , COI: 1:CAS:528:DyaK38XhsF2htLw%3D 
504 |a Kossyi, I.A., Kostinsky, A.Y., Matveyev, A.A., Silakov, V.P., (1992) Plasma Sources Sci Technol, 1, pp. 207-220. , COI: 1:CAS:528:DyaK3sXntFGjsA%3D%3D 
504 |a Slanger, T.G., Black, G., (1978) J Chem Phys, 68, pp. 998-1000. , COI: 1:CAS:528:DyaE1cXht1ymt7s%3D 
504 |a Capitelli, M., Ferreira, C.M., Gordiets, B.F., Osipov, A.I., (2000) Plasma kinetics in atmospheric gases, , Springer, New York 
504 |a Florescu-Mitchell, A.I., Mitchell, J.B.A., (2006) Phys Rep, 430, pp. 277-374. , COI: 1:CAS:528:DC%2BD28Xmslams74%3D 
504 |a Aleksandrov, N.L., Anokhin, E.M., Kindysheva, S.V., Kirpichnikov, A.A., Kosarev, I.N., Nudnova, M.M., Starikovskaia, S.M., Starikovskii, A.Y., (2012) J Phys D Appl Phys, 45, p. 255202 
504 |a Dulaney, J.L., Biondi, M.A., Johnsen, R., (1998) Phys Rev A, 37, pp. 2539-2542 
504 |a Johnston, H.S., (1968) Technical Report NSRDS-NBS-20, , National Bureau of Standards 
504 |a Gomez, S., Steen, P.G., Grahama, W.G., (2002) Appl Phys Lett, 81, pp. 19-21. , COI: 1:CAS:528:DC%2BD38XkvFOlur8%3D 
504 |a Yolles, R.S., Wise, H., (1968) J Chem Phys, 48, pp. 5109-5113. , COI: 1:CAS:528:DyaF1cXksFCnurw%3D 
504 |a Weissman, S., Mason, E.A., (1962) J Chem Phys, 37, pp. 1289-1300. , COI: 1:CAS:528:DyaF38Xks1Khtb0%3D 
504 |a Turner, M.M., (2015) Plasma Sources Sci Technol, 24, p. 035027 
504 |a Viehland, L.A., Mason, E.A., (1995) At Data Nucl Data Tables, 60, pp. 37-95. , COI: 1:CAS:528:DyaK2MXmvFKru7Y%3D 
504 |a Mason, E.A., McDaniel, E.W., (1988) Transport properties of ions in gases, , Wiley, New York 
504 |a Gudmundsson, J.T., Marakhtanov, A.M., Patel, K.K., Gopinath, V.P., Lieberman, M.A., (2000) J Phys D Appl Phys, 33, pp. 1323-1331. , COI: 1:CAS:528:DC%2BD3cXkt1amurc%3D 
504 |a Gudmundsson, J.T., Kouznetsov, I.G., Patel, K.K., Lieberman, M.A., (2001) J Phys D Appl Phys, 34, pp. 1100-1109. , COI: 1:CAS:528:DC%2BD3MXisleht7o%3D 
504 |a Gudmundsson, J.T., (2004) J Phys D Appl Phys, 37, pp. 2073-2081. , COI: 1:CAS:528:DC%2BD2cXmslajtr8%3D 
504 |a Vagin, N.P., Ionin, A.A., Klimachev, K.I.V., Napartovich, A.P., Sinitsyn, D.V., Yuryshev, N.N., (2003) Plasma Phys Rep, 29, pp. 211-219. , COI: 1:CAS:528:DC%2BD3sXitlels7s%3D 
504 |a Toneli, D.A., Pessoa, R.S., Roberto, M., Gudmundsson, J.T., (2015) J Phys D Appl Phys, 48, p. 325202 
504 |a Hannesdottir, H., Gudmundsson, J.T., (2016) Plasma Sources Sci Technol, 25, p. 055002 
504 |a Phelps, A.B., Pitchford, L.C., (1985) Phys Rev A, 31, pp. 2932-2949. , COI: 1:CAS:528:DyaL2MXktFWlur0%3D 
504 |a Rapp, D., Briglia, D., (1965) J Chem Phys, 43, pp. 1480-1489. , COI: 1:CAS:528:DyaF2MXksV2rsbc%3D 
504 |a Eliasson, B., Kogelschatz, U., (1986) Rep. No. CH-5405, , Brown BoveriForschungszentrum, Baden 
504 |a Lieberman, M.A., Lichtenberg, A.J., (1994) Principles of plasma discharges and materials processing, , Willey, New York 
504 |a Almeida, P.G.C., Benilov, M.S., Naidis, G.V., (2002) J Phys D Appl Phys, 35, pp. 1577-1584. , COI: 1:CAS:528:DC%2BD38XlsFOiurg%3D 
504 |a Ellis, H.W., Pai, R.Y., McDaniel, E.W., Mason, E.A., Viehland, L.A., (1976) At Data Nucl Data Tables, 17, pp. 177-210. , COI: 1:CAS:528:DyaE28XkvF2hurk%3D 
504 |a Levin, E., Wright, M.J., (2004) J. Thermophys Heat Transf, 18, pp. 143-147. , COI: 1:CAS:528:DC%2BD2cXlvV2ktw%3D%3D 
504 |a Lindsay, B.G., Sieglaff, S.K.A., Stebbings, R.F., (2001) J Geophys Res, 106, pp. 8197-8203. , COI: 1:CAS:528:DC%2BD3MXjvVKrtrk%3D 
504 |a Lee, C., Graves, D.B., Lieberman, M.A., Hess, D.W., (1994) J Electrochem Soc, 41, pp. 1546-1555 
504 |a Ardelyan, N.V., Bychkov, V.L., Kochetov, I.G., Kosmachevskii, K.V., (2011) IEEE Trans Plasma Sci, 39, pp. 3326-3330. , COI: 1:CAS:528:DC%2BC38XhslOmtbc%3D 
504 |a Robson, R.E., (1986) J Chem Phys, 85, pp. 4486-4501. , COI: 1:CAS:528:DyaL28XlvFOntL4%3D 
504 |a Rapp, D., Englander-Golden, P., Briglia, D.D., (1965) J Chem Phys, 42, pp. 4081-4085. , COI: 1:CAS:528:DyaF2MXktVKrs7k%3D 
504 |a Capitelli, M., Bardsley, J.N., (1989) Non–equilibrium processes in partially ionized gases, , Plenum Press, New York 
504 |a Popov, N.A., (2016) Plasma Sources Sci Technol, 25, p. 044003 
504 |a Flitti, A., Pancheshnyi, S., (2009) Eur Phys J Appl Phys, 45, p. 21001 
504 |a Piper, L.G., (1988) J Chem Phys, 88, pp. 231-239. , COI: 1:CAS:528:DyaL1cXosVCnsg%3D%3D 
504 |a Piper, L.G., (1988) J Chem Phys, 88, pp. 6911-6921. , COI: 1:CAS:528:DyaL1cXkvF2jt7s%3D 
504 |a Komuro, A., Ono, R., (2014) J Phys D Appl Phys, 47, p. 155202. , (13 pp) 
504 |a Ferguson, E.E., (1986) J Phys Chem, 90, pp. 731-738. , COI: 1:CAS:528:DyaL28XpvFamsw%3D%3D 
504 |a Ervin, K.M., Anusiewicz, I., Skurski, P., Simons, J., Lineberger, W.C., (2003) J Phys Chem A, 107, pp. 8521-8529. , COI: 1:CAS:528:DC%2BD3sXnt1Kks7s%3D 
504 |a Hagelaar, G.J.M., de Hoog, F.J., Kroesen, G.M.W., (2000) Phys Rev E, 62, pp. 1452-1454. , COI: 1:CAS:528:DC%2BD3cXkvVensrs%3D 
504 |a Go, D.B., Pohlman, D.A., (2010) J Appl Phys, 107, p. 103303 
504 |a Leveroni, E., Pfender, E., (1989) Rev Sci Instrum, 60, pp. 3744-3749 
504 |a Pancheshnyi, S.V., Starikovskii, A.Y., (2003) J Phys D Appl Phys, 36, pp. 2683-2691. , COI: 1:CAS:528:DC%2BD3sXovVyhu7o%3D 
504 |a Scharfetter, D.L., Gummel, H.K., (1969) IEEE Trans Electron Devices, 16, pp. 64-77 
504 |a Hagelaar, G.J.M., Kroesen, G.M.W., (2000) J Comp Phys, 159, pp. 1-12 
504 |a Stone, H.L., (1968) SIAM J Numer Anal, 5, pp. 530-558 
504 |a Kulikovsky, A.A., (1995) J Comp Phys, 119, pp. 149-155 
504 |a Godyak, A., Sternberg, N., (1990) Phys Rev A, 42, pp. 2299-2312. , COI: 1:CAS:528:DyaK3cXlvVart70%3D 
504 |a Sakiyama, Y., Graves, D.B., (2007) J Appl Phys, 101, p. 073306 
506 |2 openaire  |e Política editorial 
520 3 |a A two-dimensional model of the non-equilibrium unipolar discharge occurring in the plasma–sheath boundary region of a transferred-arc was developed. This model was used to study the current transfer to the nozzle (1 mm diameter) of a 30 A arc cutting torch operated with oxygen. The energy balance and chemistry processes in the discharge were described by using a kinetic block of 45 elementary reactions and processes with the participation of 13 species including electronically excited particles. The nonlocal transport of electrons was accounted for into the fluid model. The dependence of the ion mobility with the electric field was also considered. Basic discharge properties were described. It has been found that a large part (~ 80%) of the total electric power (1700 mW) delivered in the bulk of the sheath region is spent in heating the positive ions and further dissipated through collisions with the neutral particles. The results also showed that the electron energy loss in inelastic collisions represents only ~ 25% of the electron power and that about 63% of the power spent on gas heating is produced by the ion–molecule reaction, the electron–ion and ion–ion recombination reactions, and by the electron attachment. The rest of the power converted into heat is contributed by dissociation by electron-impact, dissociative ionization and quenching of O(1D). Some fast gas heating channels which are expected to play a key role in the double-arcing phenomena in oxygen gas were also identified. © 2017, Springer Science+Business Media, LLC.  |l eng 
593 |a Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto, UTN, Laprida 651, Venado Tuerto, Santa Fe, Argentina 
593 |a Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto, Universidad Tecnológica Nacional, CONICET, Laprida 651, Venado Tuerto, Santa Fe, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a CONICET- Universidad de Buenos Aires, Instituto de Física del Plasma (INFIP), Buenos Aires, Argentina 
690 1 0 |a PLASMA–SHEATH 
690 1 0 |a UNIPOLAR DISCHARGE 
690 1 0 |a WALL-STABILIZED ARC 
690 1 0 |a COLLISIONAL PLASMAS 
690 1 0 |a DISSOCIATION 
690 1 0 |a ELECTRIC FIELDS 
690 1 0 |a ELECTRON ENERGY LEVELS 
690 1 0 |a ELECTRONS 
690 1 0 |a ENERGY DISSIPATION 
690 1 0 |a GAS HEATING 
690 1 0 |a HARD FACING 
690 1 0 |a IMPACT IONIZATION 
690 1 0 |a IONIZATION OF GASES 
690 1 0 |a IONS 
690 1 0 |a OXYGEN CUTTING 
690 1 0 |a PHOTODISSOCIATION 
690 1 0 |a POSITIVE IONS 
690 1 0 |a DISCHARGE PROPERTIES 
690 1 0 |a DISSOCIATIVE IONIZATION 
690 1 0 |a ELECTRON ATTACHMENT 
690 1 0 |a ELECTRON ENERGY LOSS 
690 1 0 |a ELEMENTARY REACTION 
690 1 0 |a INELASTIC COLLISION 
690 1 0 |a TWO DIMENSIONAL MODEL 
690 1 0 |a WALL-STABILIZED ARC 
690 1 0 |a ELECTRIC DISCHARGES 
700 1 |a Prevosto, L. 
700 1 |a Chamorro, Juan Camilo 
700 1 |a Minotti, F.O. 
700 1 |a Kelly, H. 
773 0 |d Springer New York LLC, 2018  |g v. 38  |h pp. 147-176  |k n. 1  |p Plasma Chem. Plasma Process.  |x 02724324  |t Plasma Chemistry and Plasma Processing 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032987512&doi=10.1007%2fs11090-017-9859-x&partnerID=40&md5=6791c47a68fe74c5ecdbe8c7af02181d  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11090-017-9859-x  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02724324_v38_n1_p147_Mancinelli  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724324_v38_n1_p147_Mancinelli  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_02724324_v38_n1_p147_Mancinelli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion