Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability

Aims: The aim of this work is to analyse the effect of pH, fungal identity and P chemical nature on microbial development and phosphatase release, discussing solubilization and mineralization processes in P cycling. Methods and Results: P solubilizing fungi (Talaromyces flavus, T. helicus L, T. heli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Della Mónica, I.F
Otros Autores: Godoy, M.S, Godeas, A.M, Scervino, J.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2018
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16358caa a22016817a 4500
001 PAPER-17282
003 AR-BaUEN
005 20230518204828.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85038418290 
024 7 |2 cas  |a acid phosphatase, 9001-77-8, 9025-88-1; alkaline phosphatase, 9001-78-9; aluminum, 7429-90-5; calcium, 7440-70-2, 14092-94-5; iron, 14093-02-8, 53858-86-9, 7439-89-6; phosphatase, 9013-05-2; phosphatidylcholine, 55128-59-1, 8002-43-5; phosphorus, 7723-14-0; phytate, 14306-25-3, 7205-52-9; phosphate, 14066-19-4, 14265-44-2; Fungal Proteins; Phosphates; Phosphoric Monoester Hydrolases; Soil 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JAMIF 
100 1 |a Della Mónica, I.F. 
245 1 0 |a Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability 
260 |b Blackwell Publishing Ltd  |c 2018 
270 1 0 |m Della Mónica, I.F.; Departamento de Biodiversidad y Biología Experimental, Instituto de Micología y Botánica (INMIBO) CONICET-FCEN, UBAArgentina; email: ivanadm@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aseri, G.K., Jain, N., Tarafdar, J.C., Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi arid soils of India (2009) Am J Agric Environ Sci, 5, pp. 564-570 
504 |a Banik, R.M., Pandey, S.K., Selection of metal salts for alkaline phosphatase production using response surface methodology (2009) Food Res Int, 42, pp. 470-475 
504 |a Beech, I.B., Paiva, M., Caus, M., Coutinho, C., Enzymatic activity and within biofilms of sulphate-reducing bacteria (2001) Biofilm Community Interactions: Chance or Necessity?, pp. 231-239. , In, ed., Gilbert, P.G., Allison, D., Brading, M., Verran, J., Walker, J., Powys, BioLine 
504 |a Bünemann, E.K., Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients (2008) Soil Biol Biochem, 40, pp. 2116-2129 
504 |a Dean, R.L., Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations (2002) Biochem Mol Biol Educ, 30, pp. 401-407 
504 |a Della Mónica, I.F., Stefanoni Rubio, P.J., Cina, R.P., Recchi, M., Godeas, A.M., Scervino, J.M., Effects of the phosphate-solubilizing fungus Talaromyces flavus on the development and efficiency of the Gigaspora rosea-Triticum aestivum symbiosis (2014) Symbiosis, 64, pp. 25-32 
504 |a Della Mónica, I.F., Saparrat, M.C.N., Godeas, A.M., Scervino, J.M., The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes (2015) Fungal Ecol, 17, pp. 10-17 
504 |a Deubel, A., Merbach, W., Influence of Microorganisms on Phosphorus Bioavailability in Soils (2005) Microorganisms in Soils: Roles in Genesis and Functions, pp. 177-191. , In, eds., Varma, A., Buscot, F., Berlin Heidelberg, Springer 
504 |a El-Tarabily, K.A., Nassar, A.H., Sivasithamparam, K., Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica (2008) Appl Soil Ecol, 39, pp. 161-171 
504 |a Garcia-Lopez, A.M., Aviles, M., Delgado, A., Plant uptake of phosphorus from sparingly available P-sources as affected by Trichoderma asperellum T34 (2015) Agric Food Sci, 24, pp. 240-260 
504 |a Garg, S., Bahl, G.S., Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils (2008) Bioresour Technol, 99, pp. 5773-5777 
504 |a Gargova, S., Sariyska, M., Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase (2003) Enzyme Microb Technol, 32, pp. 231-235 
504 |a Goldstein, A.H., Future trends in research on microbial phosphate solubilization: one hundred years of insolubility (2007) First International Meeting on Microbial Phosphate Solubilization, pp. 91-96. , In, ed., Velázquez, E., Rodríguez-Barrueco, C, Dordrecht, Springer Netherlands 
504 |a Gyaneshwar, P., Kumar, G.N., Parekh, L.J., Effect of buffering on the phosphate-solubilizing ability of microorganisms (1998) World J Microbiol Biotechnol, 14, pp. 669-673 
504 |a Illmer, P., Schinner, F., Solubilization of inorganic calcium phosphates—Solubilization mechanisms (1995) Soil Biol Biochem, 27, pp. 257-263 
504 |a Jones, D.L., Organic acids in the rhizosphere – a critical review (1998) Plant Soil, 205, pp. 25-44 
504 |a Jurinak, J.J., Dudley, L.M., Allen, M.F., Knight, W.G., The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: a thermodynamic study (1986) Soil Sci, 142, pp. 255-261 
504 |a Kapri, A., Tewari, L., Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp (2010) Brazilian J Microbiol, 41, pp. 787-795 
504 |a Kucey, R.M.N., Janzen, H.H., Leggett, M.E., Microbially mediated increases in plant-available phosphorus (1989) Adv Agron, 42, pp. 198-228 
504 |a Kumar Adhya, T., Kumar, N., Reddy, G., Podile, A.R., Bee, H., Samantaray, B., Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils (2015) Curr Sci, 108, pp. 1280-1287 
504 |a Ma, X.-F., Wright, E., Ge, Y., Bell, J., Xi, Y., Bouton, J.H., Wang, Z.-Y., Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes (2009) Plant Sci, 176, pp. 479-488 
504 |a Manzoor, M., Abbasi, M.K., Sultan, T., Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion (2017) Geomicrobiol J, 34, pp. 81-95 
504 |a Martínez, O.A., Crowley, D.E., Mora, M.L., Jorquera, M.A., Short-term study shows that phytate-mineralizing rhizobacteria inoculation affects the biomass, phosphorus (P) uptake and rhizosphere properties of cereal plants (2015) J Soil Sci Plant Nutr, 15, pp. 153-166 
504 |a Nahas, E., Control of acid phosphatases expression from Aspergillus niger by soil characteristics (2015) Brazilian Arch Biol Technol, 58, pp. 658-666 
504 |a Nautiyal, C.S., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms (1999) FEMS Microbiol Lett, 170, pp. 265-270 
504 |a Oliveira, C.A., Alves, V.M.C., Marriel, I.E., Gomes, E.A., Scotti, M.R., Carneiro, N.P., Guimarães, C.T., Schaffert, R.E., Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome (2009) Soil Biol Biochem, 41, pp. 1782-1787 
504 |a Pandey, A.K., White, H., Podila, G.K., Functional genomic approaches for mycorrhizal research (2007) Advanced Techniques in Soil Microbiology, pp. 17-30. , In, ed., Varma, A., Oelmüller, R, New York, Springer-Verlag Berlin Heidelberg 
504 |a Pawar, V.C., Thaker, V.S., Acid phosphatase and invertase activities of Aspergillus niger (2009) Mycoscience, 50, pp. 323-330 
504 |a Richardson, A.E., Soil microorganisms and phosphorus availability (1994) Soil Biota Management in Sustainable Farming Systems, pp. 50-62. , In, ed., Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., Grace, P.R., East Melbourne, Australia, CSIRO 
504 |a Richardson, A.E., Simpson, R.J., Soil microorganisms mediating phosphorus availability update on microbial phosphorus (2011) Plant Physiol, 156, pp. 989-996 
504 |a Richardson, A.E., Hadobas, P.A., Hayes, J.E., Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture (2000) Plant, Cell Environ, 23, pp. 397-405 
504 |a Richardson, A.E., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., Ryan, M.H., Plant and microbial strategies to improve the phosphorus efficiency of agriculture (2011) Plant Soil, 349, pp. 121-156 
504 |a Rodriguez, H., Fraga, R., Phosphate solubilizing bacteria and their role in plant growth promotion (1999) Biotechnol Adv, 17, pp. 319-339 
504 |a Scervino, J.M., Mesa, M.P., Della Mónica, I.F., Recchi, M., Sarmiento Moreno, N., Godeas, A.M., Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization (2010) Biol Fertil Soils, 46, pp. 755-763 
504 |a Scervino, J.M., Papinutti, V.L., Godoy, M.S., Rodriguez, M.A., Della Mónica, I.F., Recchi, M., Pettinari, M.J., Godeas, A.M., Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production (2011) J Appl Microbiol, 110, pp. 1215-1223 
504 |a Sindhu, S.S., Phour, M., Choudhary, S.R., Chaudhary, D., Phosphorus Cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants (2014) Geomicrobiology and Biogeochemistry, pp. 199-237. , In, ed., Parmar, N., Singh, A., Berlin Heidelberg, Springer-Verlag 
504 |a Stefanoni Rubio, P.J., Godoy, M.S., Della Mónica, I.F., Pettinari, M.J., Godeas, A.M., Scervino, J.M., Carbon and nitrogen sources influence Tricalcium phosphate solubilization and extracellular phosphatase activity by Talaromyces flavus (2016) Curr Microbiol, 72, pp. 41-47 
504 |a Tarafdar, J.C., Claassen, N., Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms (1988) Biol Fertil Soils, 5, pp. 308-312 
504 |a Tarafdar, J.C., Yadav, R.S., Meena, S.C., Comparative efficiency of acid phosphatase originated from plant and fungal sources (2001) J Plant Nutr Soil Sci, 164, pp. 279-282 
504 |a Tarafdar, J.C., Bareja, M., Panwar, J., Efficiency of some phosphatase producing soil-fungi (2003) Indian J Microbiol, 43, pp. 27-32 
504 |a Whitelaw, M.A., Growth promotion of plants inoculated with phosphate-solubilizing fungi (1999) Advances in Agronomy, pp. 99-151. , In, ed., Sparks, D.L, Elsevier, MA, USA, Academic Press 
504 |a Whitelaw, M.A., Harden, T.J., Helyar, K.R., Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum (1999) Soil Biol Biochem, 31, pp. 655-665 
504 |a Yadav, R.S., Tarafdar, J.C., Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants (2001) Biol Fertil Soils, 34, pp. 140-143 
504 |a Yadav, R.S., Tarafdar, J.C., Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds (2003) Soil Biol Biochem, 35, pp. 745-751 
520 3 |a Aims: The aim of this work is to analyse the effect of pH, fungal identity and P chemical nature on microbial development and phosphatase release, discussing solubilization and mineralization processes in P cycling. Methods and Results: P solubilizing fungi (Talaromyces flavus, T. helicus L, T. helicus N, T. diversus and Penicillium purpurogenum) were grown under three pH conditions (6, 6·5 and 8·5) and with different inorganic (calcium, iron, aluminium and rock) and organic (lecithin and phytate) P sources. P solubilization, mineralization, growth and phosphatase production were recorded. Acid and neutral environments maximized fungal development and P recycling. P chemical nature changed the phosphatases release pattern depending on the fungal identity. Acid phosphatase activity was higher than alkaline phosphatases, regardless of pH or sample times. Alkaline phosphatases were affected by a combination of those factors. Conclusions: P chemical nature and pH modify fungal growth, P mineralization and solubilization processes. The underlying fungal identity-dependent metabolism governs the capacity and efficiency of P solubilization and mineralization. P solubilization and mineralization processes are interrelated and simultaneously present in soil fungi. Significance and Impact of the study: This study constitutes a reference work to improve the selection of fungal bioinoculants in different environmental conditions, highlighting their role in P cycling. © 2017 The Society for Applied Microbiology  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This research was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT). 
593 |a Departamento de Biodiversidad y Biología Experimental, Instituto de Micología y Botánica (INMIBO) CONICET-FCEN, UBA, Buenos Aires, Argentina 
593 |a Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET-FCEN, UBA, Buenos Aires, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche, Río Negro, Argentina 
690 1 0 |a P MINERALIZATION 
690 1 0 |a P SOLUBILIZATION 
690 1 0 |a P SOLUBILIZING FUNGI 
690 1 0 |a PHOSPHATASE 
690 1 0 |a ACID PHOSPHATASE 
690 1 0 |a ALKALINE PHOSPHATASE 
690 1 0 |a ALUMINUM 
690 1 0 |a CALCIUM 
690 1 0 |a IRON 
690 1 0 |a PHOSPHATASE 
690 1 0 |a PHOSPHATIDYLCHOLINE 
690 1 0 |a PHOSPHORUS 
690 1 0 |a PHYTATE 
690 1 0 |a FUNGAL PROTEIN 
690 1 0 |a PHOSPHATASE 
690 1 0 |a PHOSPHATE 
690 1 0 |a BIOMINERALIZATION 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a FUNGUS 
690 1 0 |a INOCULATION 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIAL ACTIVITY 
690 1 0 |a NUTRIENT AVAILABILITY 
690 1 0 |a PHOSPHATASE 
690 1 0 |a PHOSPHORUS CYCLE 
690 1 0 |a SOLUBILIZATION 
690 1 0 |a ARTICLE 
690 1 0 |a FUNGAL DEVELOPMENT 
690 1 0 |a FUNGUS GROWTH 
690 1 0 |a MINERALIZATION 
690 1 0 |a NONHUMAN 
690 1 0 |a PENICILLIUM PURPUROGENUM 
690 1 0 |a PHOSPHORUS CYCLE 
690 1 0 |a ROCK 
690 1 0 |a SOLUBILIZATION 
690 1 0 |a TALAROMYCES 
690 1 0 |a TALAROMYCES DIVERSUS 
690 1 0 |a TALAROMYCES FLAVUS 
690 1 0 |a TALAROMYCES HELICUS 
690 1 0 |a CHEMISTRY 
690 1 0 |a ENZYMOLOGY 
690 1 0 |a GENETICS 
690 1 0 |a METABOLISM 
690 1 0 |a MICROBIOLOGY 
690 1 0 |a PENICILLIUM 
690 1 0 |a SOIL 
690 1 0 |a TALAROMYCES 
690 1 0 |a FUNGI 
690 1 0 |a PENICILLIUM PURPUROGENUM 
690 1 0 |a TALAROMYCES FLAVUS 
690 1 0 |a FUNGAL PROTEINS 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a PENICILLIUM 
690 1 0 |a PHOSPHATES 
690 1 0 |a PHOSPHORIC MONOESTER HYDROLASES 
690 1 0 |a SOIL 
690 1 0 |a SOIL MICROBIOLOGY 
690 1 0 |a TALAROMYCES 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
700 1 |a Godoy, M.S. 
700 1 |a Godeas, A.M. 
700 1 |a Scervino, J.M. 
773 0 |d Blackwell Publishing Ltd, 2018  |g v. 124  |h pp. 155-165  |k n. 1  |p J. Appl. Microbiol.  |x 13645072  |w (AR-BaUEN)CENRE-5421  |t Journal of Applied Microbiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038418290&doi=10.1111%2fjam.13620&partnerID=40&md5=cd111dfba241033910d7ce8db969ae5a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/jam.13620  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13645072_v124_n1_p155_DellaMonica  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13645072_v124_n1_p155_DellaMonica  |y Registro en la Biblioteca Digital 
961 |a paper_13645072_v124_n1_p155_DellaMonica  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78235