Methods for quantitative analysis of axonal cargo transport

Neurons rely on complex axonal transport mechanisms that mediate the intracellular dynamics of proteins, vesicles, and mitochondria along their high polarized structure. The fast improvement of live imaging techniques of fluorescent cargos allowed the identification of the diverse motion properties...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alloatti, M.
Otros Autores: Bruno, L., Falzone, T.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Humana Press Inc. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09127caa a22011057a 4500
001 PAPER-17273
003 AR-BaUEN
005 20230518204827.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85037678656 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Alloatti, M. 
245 1 0 |a Methods for quantitative analysis of axonal cargo transport 
260 |b Humana Press Inc.  |c 2018 
270 1 0 |m Falzone, T.L.; Instituto de Biología Celular y Neurociencias (IBCN) CONICET-UBA, Facultad de Medicina, Universidad de Buenos AiresArgentina; email: tfalzone@fmed.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Maday, S., Twelvetrees, A., Moughamian, A., Holzbaur, E.F., Axonal transport: Cargo-specific mechanisms of motility and regulation (2014) Neuron, 84, pp. 292-309 
504 |a Ito, K., Enomoto, H., Retrograde transport of neurotrophic factor signaling: Implications in neuronal development and pathogenesis (2016) J Biochem, 160, pp. 77-85 
504 |a De Vos, K.J., Hafezparast, M., Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? (2017) Neurobiol Dis, 105, 283p 
504 |a Encalada, S.E., Goldstein, L., Biophysical challenges to axonal transport: Motor-cargo deficiencies and neurodegeneration (2014) Annu Rev Biophys, 43, pp. 141-169 
504 |a Hirokawa, N., Niwa, S., Tanaka, Y., Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease (2010) Neuron, 68, pp. 610-638 
504 |a Brady, S.T., Morfini, G.A., Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases (2017) Neurobiol Dis, 105, pp. 273-282 
504 |a Lacovich, V., Espindola, S.L., Alloatti, M., Pozo Devoto, V., Cromberg, L.E., Čarná, M.E., Forte, G., Falzone, T.L., Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons (2017) J Neurosci, 37, pp. 58-69 
504 |a Pozo Devoto, V., Dimopoulous, N., Alloatti, M., Cromberg, L., Otero, M., Saez, T., Pardi, B., Falzone, T., α-Synuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson’s disease (2017) Sci Rep, 7 (1), 5042p 
504 |a Xu, C.-C., Denton, K.R., Wang, Z.-B., Zhang, X., Li, X.-J., Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy (2016) Dis Model Mech, 9, pp. 39-49 
504 |a Mertens, J., Stüber, K., Poppe, D., Doerr, J., Ladewig, J., Brüstle, O., Koch, P., Embryonic stem cell-based modeling of tau pathology in human neurons (2013) Am J Pathol, 182, pp. 1769-1779 
504 |a Encalada, S.E., Szpankowski, L., Xia, C.H., Goldstein, L.S., Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles (2011) Cell, 144, pp. 551-565 
504 |a Duff, K., Knight, H., Refolo, L.M., Sanders, S., Yu, X., Picciano, M., Malester, B., Davies, P., Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes (2000) Neurobiol Dis, 7, pp. 87-98 
504 |a Dixit, R., Goldman, Y.E., Holzbaur, E.L., Differential regulation of dynein and kinesin motor proteins by tau (2008) Science, 319, pp. 1086-1089 
504 |a Magnani, E., Fan, J., Gasparini, L., Golding, M., Williams, M., Schiavo, G., Goedert, M., Spillantini, M.G., Interaction of tau protein with the dynactin complex (2007) EMBO J, 26, pp. 4546-4554 
504 |a Perrot, R., Julien, J.-P., Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments (2009) FASEB J, 23, pp. 3213-3225 
504 |a Otero, M.G., Alloatti, M., Cromberg, L.E., Almenar-Queralt, A., Encalada, S.E., Pozo Devoto, V.M., Bruno, L., Falzone, T.L., Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function (2014) J Cell Sci, 127, pp. 1537-1549 
504 |a Reis, G.F., Yang, G., Szpankowski, L., Weaver, C., Shah, S.B., Robinson, J.T., Hays, T.S., Goldstein, L.S., Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila (2012) Mol Biol Cell, 23, pp. 1700-1714 
504 |a Meijering, E., Dzyubachyk, O., Smal, I., Methods for cell and particle tracking (2012) Methods in Enzymology, pp. 183-200. , Conn PM, Academic, New York 
504 |a Gu, Y., Sun, W., Wang, G., Jeftinija, K., Jeftinija, S., Fang, N., Rotational dynamics of cargos at pauses during axonal transport (2012) Nat Commun, 3, 1030p. , https://doi.org/10.1038/ncomms2037 
504 |a Gal, N., Lechtman-Goldstein, D., Weihs, D., Particle tracking in living cells: A review of the mean square displacement method and beyond (2013) Rheol Acta, 52, pp. 425-443 
504 |a Fu, M.M., Holzbaur, E.L., JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors (2013) J Cell Biol, 202, pp. 495-508 
504 |a Leidel, C., Longoria Rafael, A., Gutierrez, F.M., Shubeita George, T., Measuring molecular motor forces in vivo: Implications for tug-of-war models of bidirectional transport (2012) Biophys J, 103, pp. 492-500 
520 3 |a Neurons rely on complex axonal transport mechanisms that mediate the intracellular dynamics of proteins, vesicles, and mitochondria along their high polarized structure. The fast improvement of live imaging techniques of fluorescent cargos allowed the identification of the diverse motion properties of different transported molecules. These properties arise as the result of molecular interactions between many players involved in axonal transport. Motor proteins, microtubule tracks, cargo association, and even axonal viscosity contribute to the proper axonal dynamics of different cargos. The unique properties in each cargo determine their distribution and location that is relevant to ensure neuronal cell activity and survival. This chapter provides a computational-based method for the generation of cargo trajectories and the identification of different motion regimes while cargo moves along axons. Then, the procedure to extract relevant parameters from active, diffusive, and confined motion is provided. These properties will allow a better comprehension of the nature and characteristics of cargo motion in living cells, therefore contributing to understanding the consequences of transport defects that arise during diseases of the nervous system. © Springer Science+Business Media, LLC 2018.  |l eng 
593 |a Instituto de Biología Celular y Neurociencias (IBCN) CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Departamento de Física (IFIBA) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Biología y Medicina Experimental (IBYME) CONICET, Buenos Aires, Argentina 
690 1 0 |a ANTEROGRADE 
690 1 0 |a AXONAL TRANSPORT 
690 1 0 |a DIFFUSIVE 
690 1 0 |a PAUSES 
690 1 0 |a RETROGRADE 
690 1 0 |a REVERSIONS 
690 1 0 |a RUN LENGTHS 
690 1 0 |a SEGMENTAL VELOCITIES 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL CELL CULTURE 
690 1 0 |a DNA VECTOR 
690 1 0 |a GENETIC TRANSFECTION 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a HUMAN CELL CULTURE 
690 1 0 |a IMAGING 
690 1 0 |a MOUSE 
690 1 0 |a NERVE CELL CULTURE 
690 1 0 |a NERVE FIBER TRANSPORT 
690 1 0 |a NONHUMAN 
690 1 0 |a PLURIPOTENT STEM CELL 
690 1 0 |a QUANTITATIVE ANALYSIS 
690 1 0 |a RAT 
690 1 0 |a ANIMAL 
690 1 0 |a AXON 
690 1 0 |a BIOLOGY 
690 1 0 |a CYTOLOGY 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR IMAGING 
690 1 0 |a NERVE CELL 
690 1 0 |a NERVE FIBER TRANSPORT 
690 1 0 |a PROCEDURES 
690 1 0 |a SOFTWARE 
690 1 0 |a ANIMALS 
690 1 0 |a AXONAL TRANSPORT 
690 1 0 |a AXONS 
690 1 0 |a COMPUTATIONAL BIOLOGY 
690 1 0 |a HUMANS 
690 1 0 |a MICE 
690 1 0 |a MOLECULAR IMAGING 
690 1 0 |a NEURONS 
690 1 0 |a RATS 
690 1 0 |a SOFTWARE 
700 1 |a Bruno, L. 
700 1 |a Falzone, T.L. 
773 0 |d Humana Press Inc., 2018  |g v. 1727  |h pp. 217-226  |p Methods Mol. Biol.  |x 10643745  |t Methods in Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037678656&doi=10.1007%2f978-1-4939-7571-6_16&partnerID=40&md5=5a897236a06113ac09ffc79931b1ad2a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-1-4939-7571-6_16  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10643745_v1727_n_p217_Alloatti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10643745_v1727_n_p217_Alloatti  |y Registro en la Biblioteca Digital 
961 |a paper_10643745_v1727_n_p217_Alloatti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78226