Ball lightning

A plasmoid model for ball lightning is examined. The usual virial theorem shows that confinement by self-field alone is inconsistent with conservation laws for energy and momentum; a generalization shows that the presence of air pressure removes this inconsistency and gives an upper bound to the sto...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Finkelstein, D.
Otros Autores: Rubinstein, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1964
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03233caa a22003017a 4500
001 PAPER-1725
003 AR-BaUEN
005 20230518203104.0
008 190411s1964 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-36149016430 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Finkelstein, D. 
245 1 0 |a Ball lightning 
260 |c 1964 
270 1 0 |m Finkelstein, D.; Belfer Graduate School of Science, Yeshiva University, New York, NY, United States 
506 |2 openaire  |e Política editorial 
520 3 |a A plasmoid model for ball lightning is examined. The usual virial theorem shows that confinement by self-field alone is inconsistent with conservation laws for energy and momentum; a generalization shows that the presence of air pressure removes this inconsistency and gives an upper bound to the stored energy. This upper bound is much less than the energies reported for some occurrences. For permissible energies the kinetic temperature and density of the plasma can be chosen so that it will not be degraded by internal Coulomb collisions or dissipated by cyclotron radiation for some seconds. It is however necessary to insulate the plasma from the air. A self-field that is able to do this will give up the total stored energy to ohmic heat in the air boundary in a much shorter time than is reported. It is concluded that the plasmoid model is impossible and that energy must be supplied to the ball during its existence if the order of magnitude of the reported energies and times are accepted. Therefore a new model is examined. The high dc electric fields associated with lightning storms are invoked as energy source, and an idealized nonlinear conduction problem is shown to admit ball-like solutions. This leads to a ball lightning model of a low-current glow discharge in an atmospheric dc field. A region of higher conductivity results in a local increase of the electric field and current density sufficient to produce a glow discharge, which provides the higher conductivity and is thus self-consistent. If this model is appropriate, then ball lightning has no relevance to controlled-fusion plasma research. © 1964 The American Physical Society.  |l eng 
593 |a Belfer Graduate School of Science, Yeshiva University, New York, NY, United States 
593 |a Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina 
700 1 |a Rubinstein, J. 
773 0 |d 1964  |g v. 135  |h pp. A390-A396  |k n. 2A  |x 0031899X  |w (AR-BaUEN)CENRE-396  |t Physical Review 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-36149016430&doi=10.1103%2fPhysRev.135.A390&partnerID=40&md5=a341a86a318c41f85dc3a6e89359d6ef  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRev.135.A390  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0031899X_v135_n2A_pA390_Finkelstein  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0031899X_v135_n2A_pA390_Finkelstein  |y Registro en la Biblioteca Digital 
961 |a paper_0031899X_v135_n2A_pA390_Finkelstein  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 62678