How does the stimulus define exocytosis in adrenal chromaffin cells?

The extent and type of hormones and active peptides secreted by the chromaffin cells of the adrenal medulla have to be adjusted to physiological requirements. The chromaffin cell secretory activity is controlled by the splanchnic nerve firing frequency, which goes from approximately 0.5 Hz in basal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marengo, F.D
Otros Autores: Cárdenas, A.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 45602caa a22026537a 4500
001 PAPER-17246
003 AR-BaUEN
005 20230607131908.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85028775504 
024 7 |2 cas  |a myosin adenosine triphosphatase; protein, 67254-75-5; Calcium Channels; Vesicular Transport Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PFLAB 
100 1 |a Marengo, F.D. 
245 1 4 |a How does the stimulus define exocytosis in adrenal chromaffin cells? 
260 |b Springer Verlag  |c 2018 
270 1 0 |m Marengo, F.D.; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasArgentina; email: fernando@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Albillos, A., Dernick, G., Horstmann, H., Almers, W., Alvarez de Toledo, G., Lindau, M., The exocytotic event in chromaffin cells revealed by patch amperometry (1997) Nature, 389 (6650), pp. 509-512. , COI: 1:CAS:528:DyaK2sXmsFaisL8%3D, PID: 9333242 
504 |a Albillos, A., Neher, E., Moser, T., R-type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells (2000) J Neurosci, 20, pp. 8323-8330. , COI: 1:CAS:528:DC%2BD3cXot1GrurY%3D, PID: 11069939 
504 |a Alés, E., Fuentealba, J., Garcia, A.G., Lopez, M.G., Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria (2005) Eur J Neurosci, 21, pp. 142-150. , PID: 15654851 
504 |a Alés, E., Tabares, L., Poyato, J.M., Valero, V., Lindau, M., Alvarez de Toledo, G., High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism (1999) Nat Cell Biol, 1, pp. 40-44. , PID: 10559862 
504 |a Alvarez, Y.D., Belingheri, A.V., Perez Bay, A.E., Javis, S.E., Tedford, H.W., Zamponi, G., Marengo, F.D., The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site (2013) PLoS One, 8. , COI: 1:CAS:528:DC%2BC3sXis1ars7g%3D, PID: 23382986 
504 |a Alvarez, Y.D., Ibanez, L.I., Uchitel, O.D., Marengo, F.D., P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells (2008) Cell Calcium, 43, pp. 155-164. , COI: 1:CAS:528:DC%2BD1cXpt1Oqtw%3D%3D, PID: 17561253 
504 |a Alvarez, Y.D., Marengo, F.D., The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells (2011) J Neurochem, 116, pp. 155-163. , COI: 1:CAS:528:DC%2BC3MXhtFGqtLk%3D, PID: 21073467 
504 |a Anantharam, A., Bittner, M.A., Aikman, R.L., Stuenkel, E.L., Schmid, S.L., Axelrod, D., Holz, R.W., A new role for the dynamin GTPase in the regulation of fusion pore expansion (2011) Mol Biol Cell, 22, pp. 1907-1918. , COI: 1:CAS:528:DC%2BC3MXnsFKku70%3D, PID: 21460182 
504 |a Archer, D.A., Graham, M.E., Burgoyne, R.D., Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis (2002) J Biol Chem, 277, pp. 18249-18252. , COI: 1:CAS:528:DC%2BD38XktFCitLw%3D, PID: 11929859 
504 |a Ardiles, A.O., González-Jamett, A.M., Maripillán, J., Naranjo, D., Caviedes, P., Cárdenas, A.M., Calcium channel subtypes differentially regulate fusion pore stability and expansion (2007) J Neurochem, 103, pp. 1574-1581. , COI: 1:CAS:528:DC%2BD2sXhtl2jurnL, PID: 17760862 
504 |a Ardiles, A.O., Maripillán, J., Lagos, V.L., Toro, R., Mora, I.G., Villarroel, L., Alés, E., Cárdenas, A.M., A rapid exocytosis mode in chromaffin cells with a neuronal phenotype (2006) J Neurochem, 99, pp. 29-41. , COI: 1:CAS:528:DC%2BD28XhtFGhtrjJ, PID: 16889641 
504 |a Artalejo, C.R., Adams, M.E., Fox, A.P., Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells (1994) Nature, 367, pp. 72-76. , COI: 1:CAS:528:DyaK2cXntVWitA%3D%3D, PID: 8107778 
504 |a Ashery, U., Varoqueaux, F., Voets, T., Betz, A., Thakur, P., Koch, H., Neher, E., Rettig, J., Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells (2000) EMBO J, 19, pp. 3586-3596. , COI: 1:CAS:528:DC%2BD3cXmtlegsrs%3D, PID: 10899113 
504 |a Augustine, G.J., Neher, E., Calcium requirements for secretion in bovine chromaffin cells (1992) J Physiol, 450, pp. 247-271. , COI: 1:STN:280:DyaK3s%2FlvVKnuw%3D%3D, PID: 1432709 
504 |a Bao, H., Goldschen-Ohm, M., Jeggle, P., Chanda, B., Edwardson, J.M., Chapman, E.R., Exocytotic fusion pores are composed of both lipids and proteins (2016) Nat Struct Mol Biol, 23, pp. 67-73. , COI: 1:CAS:528:DC%2BC2MXhvFOmtb%2FK, PID: 26656855 
504 |a Becherer, U., Moser, T., Stuhmer, W., Oheim, M., Calcium regulates exocytosis at the level of single vesicles (2003) Nat Neurosci, 6, pp. 846-853. , COI: 1:CAS:528:DC%2BD3sXlslOju70%3D, PID: 12845327 
504 |a Berberian, K., Torres, A.J., Fang, Q., Kisler, K., Lindau, M., F-actin and myosin II accelerate catecholamine release from chromaffin granules (2009) J Neurosci, 29, pp. 863-870. , COI: 1:CAS:528:DC%2BD1MXhsVCntLk%3D, PID: 19158310 
504 |a Borisovska, M., Zhao, Y., Tsytsyura, Y., Glyvuk, N., Takamori, S., Matti, U., Rettig, J., Bruns, D., v-SNAREs control exocytosis of vesicles from priming to fusion (2005) EMBO J, 24, pp. 2114-2126. , COI: 1:CAS:528:DC%2BD2MXltFWru74%3D, PID: 15920476 
504 |a Brandt, B.L., Hagiwara, S., Kikodoro, Y., Miyazaki, S., Action potentials in the rat chromaffin cell and effects of acetylcholine (1976) J Physiol, 263, pp. 417-439. , COI: 1:CAS:528:DyaE2sXhtlOisLs%3D, PID: 1018274 
504 |a Brewer, K.D., Bacaj, T., Cavalli, A., Camilloni, C., Swarbrick, J.D., Liu, J., Zhou, A., Rizo, J., Dynamic binding mode of a synaptotagmin-1-SNARE complex in solution (2015) Nat Struct Mol Biol, 22, pp. 555-564. , COI: 1:CAS:528:DC%2BC2MXhtFaisbnE, PID: 26030874 
504 |a Cárdenas, A.M., Marengo, F., How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode and vesicle recycling in neuroendocrine cells (2016) J Neurochem, 137, pp. 867-879. , PID: 26849771 
504 |a Chan, S.A., Polo-Parada, L., Smith, C., Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices (2005) Arch Biochem Biophys, 435, pp. 65-73. , COI: 1:CAS:528:DC%2BD2MXos1Glsg%3D%3D, PID: 15680908 
504 |a Chang, C.W., Hui, E., Bai, J., Bruns, D., Chapman, E.R., Jackson, M.B., A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores (2015) J Neurosci, 35, pp. 5772-5780. , COI: 1:CAS:528:DC%2BC2MXpvFOjtr8%3D, PID: 25855187 
504 |a Chiang, H.C., Shin, W., Zhao, W.D., Hamid, E., Sheng, J., Baydyuk, M., Wen, P.J., Wu, L.G., Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles (2014) Nat Commun, 5, p. 3356. , PID: 24561832 
504 |a Chow, R.H., Klingauf, J., Neher, E., Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells (1994) Proc Natl Acad Sci U S A, 91, pp. 12765-12769. , COI: 1:CAS:528:DyaK2MXivVCru78%3D, PID: 7809118 
504 |a Davis, A.F., Bai, J., Fasshauer, D., Wolowick, M.J., Lewis, J.L., Chapman, E.R., Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes (1999) Neuron, 24, pp. 363-376. , COI: 1:CAS:528:DyaK1MXntFKrtbo%3D, PID: 10571230 
504 |a Dawidowski, D., Cafiso, D.S., Munc18-1 and the syntaxin-1 N terminus regulate open-closed states in a t-SNARE complex (2016) Structure, 24, pp. 392-400. , COI: 1:CAS:528:DC%2BC28XisFGrt7k%3D, PID: 26876096 
504 |a de Diego, A.M., Arnaiz-Cot, J.J., Hernandez-Guijo, J.M., Gandia, L., Garcia, A.G., Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells (2008) Acta Physiol (Oxf), 194, pp. 97-109 
504 |a de Diego, A.M., Gandía, L., García, A.G., A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla (2008) Acta Physiol (Oxf), 192 (2), pp. 287-301 
504 |a de Wit, H., Cornelisse, L.N., Toonen, R.F., Verhage, M., Docking of secretory vesicles is syntaxin dependent (2006) PLoS One, 1. , PID: 17205130 
504 |a de Wit, H., Walter, A.M., Milosevic, I., Gulyás-Kovács, A., Riedel, D., Sørensen, J.B., Verhage, M., Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes (2009) Cell, 138, pp. 935-946. , PID: 19716167 
504 |a Dhara, M., Yarzagaray, A., Schwarz, Y., Dutta, S., Grabner, C., Moghadam, P.K., Bost, A., Bruns, D., Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics (2014) J Cell Biol, 204, pp. 1123-1140. , COI: 1:CAS:528:DC%2BC2cXlvFCqtLg%3D, PID: 24687280 
504 |a Duan, K., Yu, X., Zhang, C., Zhou, Z., Control of secretion by temporal patterns of action potentials in adrenal chromaffin cells (2003) J Neurosci, 23, pp. 11235-11243. , COI: 1:CAS:528:DC%2BD3sXpvV2gur0%3D, PID: 14657183 
504 |a Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Südhof, T.C., Rizo, J., A conformational switch in syntaxin during exocytosis: role of munc18 (1999) EMBO J, 18, pp. 4372-4382. , COI: 1:CAS:528:DyaK1MXlslWgu7w%3D, PID: 10449403 
504 |a Dumitrescu Pene, T., Rosé, S.D., Lejen, T., Marcu, M.G., Trifaró, J.M., Expression of various scinderin domains in chromaffin cells indicates that this protein acts as a molecular switch in the control of actin filament dynamics and exocytosis (2005) J Neurochem, 92, pp. 780-789. , PID: 15686479 
504 |a Elhamdani, A., Azizi, F., Artalejo, C.R., Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion (2006) J Neurosci, 26, pp. 3030-3036. , COI: 1:CAS:528:DC%2BD28XivFKmuro%3D, PID: 16540581 
504 |a Elhamdani, A., Palfrey, H.C., Artalejo, C.R., Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells (2001) Neuron, 31, pp. 819-830. , COI: 1:CAS:528:DC%2BD3MXnt1Oqsb8%3D, PID: 11567619 
504 |a Estévez-Herrera, J., González-Santana, A., Baz-Dávila, R., Machado, J.D., Borges, R., The intravesicular cocktail and its role in the regulation of exocytosis (2016) J Neurochem, 137, pp. 897-903. , PID: 26990968 
504 |a Fang, Q., Berberian, K., Gong, L.W., Hafez, I., Sørensen, J.B., Lindau, M., The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics (2008) Proc Natl Acad Sci U S A, 105, pp. 15388-15392. , COI: 1:CAS:528:DC%2BD1cXht1Gnt7%2FP, PID: 18829435 
504 |a Fang, Q., Zhao, Y., Herbst, A.D., Kim, B.N., Lindau, M., Positively charged amino acids at the SNAP-25 C terminus determine fusion rates, fusion pore properties, and energetics of tight SNARE complex zippering (2015) J Neurosci, 35, pp. 3230-3239. , COI: 1:CAS:528:DC%2BC2MXhtVSjs77F, PID: 25698757 
504 |a Fang, Q., Zhao, Y., Lindau, M., Juxtamembrane tryptophans of synaptobrevin 2 control the process of membrane fusion (2013) FEBS Lett, 587, pp. 67-72. , COI: 1:CAS:528:DC%2BC38XhslymtLjK, PID: 23178715 
504 |a Firestone, J.A., Browning, M.D., Synapsin II phosphorylation and catecholamine release in bovine adrenal chromaffin cells: additive effects of histamine and nicotine (1992) J Neurochem, 58, pp. 441-447. , COI: 1:CAS:528:DyaK38XnslSiuw%3D%3D, PID: 1729391 
504 |a Fulop, T., Radabaugh, S., Smith, C., Activity-dependent differential transmitter release in mouse adrenal chromaffin cells (2005) J Neurosci, 25, pp. 7324-7332. , COI: 1:CAS:528:DC%2BD2MXpsFGitbY%3D, PID: 16093382 
504 |a Gabel, M., Delavoie, F., Demais, V., Royer, C., Bailly, Y., Vitale, N., Bader, M.F., Chasserot-Golaz, S., Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis (2015) J Cell Biol, 210, pp. 785-800. , COI: 1:CAS:528:DC%2BC2MXhsleru7%2FN, PID: 26323692 
504 |a García, A.G., Garcia-de-Diego, A.M., Gandia, L., Borges, R., Garcia-Sancho, J., Calcium signaling and exocytosis in adrenal chromaffin cells (2006) Physiol Rev, 86, pp. 1093-1131. , PID: 17015485 
504 |a García, A.G., Padín, F., Fernández-Morales, J.C., Maroto, M., García-Sancho, J., Cytosolic organelles shape calcium signals and exo-endocytotic responses of chromaffin cells (2012) Cell Calcium, 51, pp. 309-320. , PID: 22209033 
504 |a García-Sancho, J., de Diego, A.M., García, A.G., Mitochondria and chromaffin cell function (2012) Pflugers Arch, 464, pp. 33-41. , PID: 22278417 
504 |a Gasman, S., Chasserot-Golaz, S., Malacombe, M., Way, M., Bader, M.F., Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments (2004) Mol Biol Cell, 15, pp. 520-531. , COI: 1:CAS:528:DC%2BD2cXhtlGmtb0%3D, PID: 14617808 
504 |a Gerke, V., Creutz, C.E., Moss, S.E., Annexins: linking Ca2+ signalling to membrane dynamics (2005) Nat Rev Mol Cell Biol, 6, pp. 449-4461. , COI: 1:CAS:528:DC%2BD2MXks1Gmtbo%3D, PID: 15928709 
504 |a Giner, D., López, I., Villanueva, J., Torres, V., Viniegra, S., Gutiérrez, L.M., Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells (2007) Neurosci, 146, pp. 659-669. , COI: 1:CAS:528:DC%2BD2sXkslajtLc%3D 
504 |a Giner, D., Neco, P., Francés Mdel, M., López, I., Viniegra, S., Gutiérrez, L.M., Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells (2005) J Cell Sci, 118, pp. 2871-2880. , COI: 1:CAS:528:DC%2BD2MXnsVCjtrc%3D, PID: 15976446 
504 |a Giraudo, C.G., Eng, W.S., Melia, T.J., Rothman, J.E., A clamping mechanism involved in SNARE-dependent exocytosis (2006) Science, 313, pp. 676-680. , COI: 1:CAS:528:DC%2BD28Xnsl2htr4%3D, PID: 16794037 
504 |a González-Jamett, A.M., Báez-Matus, X., Hevia, M.A., Guerra, M.J., Olivares, M.J., Martínez, A.D., Neely, A., Cárdenas, A.M., The association of dynamin with synaptophysin regulates quantal size and duration of exocytotic events in chromaffin cells (2010) J Neurosci, 30, pp. 10683-10691. , PID: 20702699 
504 |a González-Jamett, A.M., Guerra, M.J., Olivares, M.J., Haro-Acuña, V., Baez-Matus, X., Momboisse, F., Martínez-Quiles, N., Cárdenas, A.M., The F-actin binding protein cortactin regulates the dynamics of the exocytotic fusion pore through its SH3 domain (2017) Front Cell Neurosci, 11, p. 130. , PID: 28522963 
504 |a González-Jamett, A.M., Haro-Acuña, V., Momboisse, F., Caviedes, P., Bevilacqua, J.A., Cárdenas, A.M., Dynamin-2 in nervous system disorders (2014) J Neurochem, 128, pp. 210-223. , PID: 24102355 
504 |a González-Jamett, A.M., Momboisse, F., Guerra, M.J., Ory, S., Báez-Matus, X., Barraza, N., Calco, V., Cárdenas, A.M., Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells (2013) PLoS One, 8. , PID: 23940613 
504 |a Graham, M.E., O'Callaghan, D.W., McMahon, H.T., Burgoyne, R.D., Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size (2002) Proc Natl Acad Sci U S A, 99, pp. 7124-7129. , COI: 1:CAS:528:DC%2BD38XjvFCqur0%3D, PID: 11997474 
504 |a Gulyás-Kovács, A., de Wit, H., Milosevic, I., Kochubey, O., Toonen, R., Klingauf, J., Verhage, M., Sørensen, J.B., Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming (2007) J Neurosci, 27, pp. 8676-8686. , PID: 17687045 
504 |a Han, X., Wang, C.T., Bai, J., Chapman, E.R., Jackson, M.B., Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis (2004) Science, 304, pp. 289-292. , COI: 1:CAS:528:DC%2BD2cXivV2isb4%3D, PID: 15016962 
504 |a Heinemann, C., von Ruden, L., Chow, R.H., Neher, E., A two-step model of secretion control in neuroendocrine cells (1993) Pflugers Archiv, 424, pp. 105-112. , COI: 1:STN:280:DyaK2c%2FitFaksg%3D%3D, PID: 8414901 
504 |a Holman, M.E., Coleman, H.A., Tonta, M.A., Parkington, H.C., Synaptic transmission from splanchnic nerves to the adrenal medulla of guinea-pigs (1994) J Physiol, 478, pp. 115-124. , PID: 7965827 
504 |a Horrigan, F.T., Bookman, R.J., Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells (1994) Neuron, 13, pp. 1119-1129. , COI: 1:CAS:528:DyaK2MXitlylsL0%3D, PID: 7946349 
504 |a Hugo, S., Dembla, E., Halimani, M., Matti, U., Rettig, J., Becherer, U., Deciphering dead-end docking of large dense core vesicles in bovine chromaffin cells (2013) J Neurosci, 33, pp. 17123-17137. , COI: 1:CAS:528:DC%2BC3sXhslSmsb%2FL, PID: 24155316 
504 |a Iijima, T., Matsumoto, G., Kidokoro, Y., Synaptic activation of rat adrenal medulla examined with a large photodiode array in combination with a voltage-sensitive dye (1992) Neuroscience, 51, pp. 211-219. , COI: 1:STN:280:DyaK3s7gtFalsA%3D%3D, PID: 1361217 
504 |a Jackson, J., Papadopulos, A., Meunier, F.A., McCluskey, A., Robinson, P.J., Keating, D.J., Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release (2015) Mol Psychiatry, 20, pp. 810-819. , COI: 1:CAS:528:DC%2BC2MXotVeqtLs%3D, PID: 25939402 
504 |a Kabachinski, G., Yamaga, M., Kielar-Grevstad, D.M., Bruinsma, S., Martin, T.F., CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis (2014) Mol Biol Cell, 5, pp. 508-521 
504 |a Kidokoro, Y., Ritchie, A.K., Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla (1980) J Physiol, 307, pp. 199-216. , COI: 1:CAS:528:DyaL3MXksV2ktg%3D%3D, PID: 7205664 
504 |a Kim, T., Gondré-Lewis, M.C., Arnaoutova, I., Loh, Y.P., Dense-core secretory granule biogenesis (2006) Physiology (Bethesda), 21, pp. 124-133. , COI: 1:CAS:528:DC%2BD28XksFSqtLo%3D 
504 |a Klingauf, J., Neher, E., Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells (1997) Biophys J, 72, pp. 674-690. , COI: 1:CAS:528:DyaK2sXnsFGktQ%3D%3D, PID: 9017195 
504 |a Laduron, P., Belpaire, F., Tissue fractionation and catecholamines II. Intracellular distribution patterns of tyrosine hydroxylase, dopa decarboxylase, dopamine-beta-hydroxylase, phenylethanolamine N-methyltransferase and monoamine oxidase in adrenal medulla (1968) Biochem Pharmacol, 17, pp. 1127-1140. , COI: 1:CAS:528:DyaF1cXksVaisb8%3D, PID: 4298204 
504 |a Lai, Y., Diao, J., Cipriano, D.J., Zhang, Y., Pfuetzner, R.A., Padolina, M.S., Brunger, A.T., Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms (2014) eLife, 3. , e03756 
504 |a Lara, B., Gandia, L., Martinez-Sierra, R., Torres, A., Garcia, A.G., Q-type Ca2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells (1998) Pflugers Arch, 435, pp. 472-478. , COI: 1:CAS:528:DyaK1cXmtVOqsg%3D%3D, PID: 9446693 
504 |a Lefkowitz, J.J., DeCrescenzo, V., Duan, K., Bellve, K.D., Fogarty, K.E., Walsh, J.V., Jr., ZhuGe, R., Catecholamine exocytosis during low frequency stimulation in mouse adrenal chromaffin cells is primarily asynchronous and controlled by the novel mechanism of Ca2+ syntilla suppression (2014) J Physiol, 592, pp. 4639-4655. , COI: 1:CAS:528:DC%2BC2cXhvVCgtrjJ, PID: 25128575 
504 |a Lin, M.Y., Rohan, J.G., Cai, H., Reim, K., Ko, C.P., Chow, R.H., Complexin facilitates exocytosis and synchronizes vesicle release in two secretory model systems (2013) J Physiol, 591, pp. 2463-2473. , COI: 1:CAS:528:DC%2BC3sXpsVeitb8%3D, PID: 23401610 
504 |a Liu, J., Guo, T., Wei, Y., Liu, M., Sui, S.F., Complexin is able to bind to SNARE core complexes in different assembled states with distinct affinity (2006) Biochem Biophys Res Commun, 347, pp. 413-419. , COI: 1:CAS:528:DC%2BD28XntFWkt7Y%3D, PID: 16828463 
504 |a Liu, Y., Schirra, C., Edelmann, L., Matti, U., Rhee, J., Hof, D., Bruns, D., Rettig, J., Two distinct secretory vesicle-priming steps in adrenal chromaffin cells (2010) J Cell Biol, 190, pp. 1067-1077. , COI: 1:CAS:528:DC%2BC3cXht1ahsbjF, PID: 20855507 
504 |a Liu, Y., Schirra, C., Stevens, D.R., Matti, U., Speidel, D., Hof, D., Bruns, D., Rettig, J., CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles (2008) J Neurosci, 28, pp. 5594-5601. , COI: 1:CAS:528:DC%2BD1cXmslWitb0%3D, PID: 18495893 
504 |a Lomax, R.B., Michelena, P., Nunez, L., Garcia-Sancho, J., Garcia, A.G., Montiel, C., Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes (1997) Am J Phys, 272, pp. C476-C484. , COI: 1:CAS:528:DyaK2sXhvVCrsL4%3D 
504 |a Luccardini, C., Yakovlev, A.V., Pasche, M., Gaillard, S., Li, D., Rousseau, F., Ly, R., Oheim, M., Measuring mitochondrial and cytoplasmic Ca2+ in EGFP expressing cells with a low-affinity calcium ruby and its dextran conjugate (2009) Cell Calcium, 45, pp. 275-283. , COI: 1:CAS:528:DC%2BD1MXivVemsLs%3D, PID: 19167753 
504 |a Ma, C., Li, W., Xu, Y., Rizo, J., Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex (2011) Nat Struct Mol Biol, 18, pp. 542-549. , COI: 1:CAS:528:DC%2BC3MXkslCmsLg%3D, PID: 21499244 
504 |a Man, K.N., Imig, C., Walter, A.M., Pinheiro, P.S., Stevens, D.R., Rettig, J., Sørensen, J.B., Wojcik, S.M., Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis (2015) eLife, 4 
504 |a Marengo, F.D., Calcium gradients and exocytosis in bovine adrenal chromaffin cells (2005) Cell Calcium, 38, pp. 87-99. , COI: 1:CAS:528:DC%2BD2MXos1ahtL0%3D, PID: 16076487 
504 |a Marengo, F.D., Monck, J.R., Development and dissipation of Ca(2+) gradients in adrenal chromaffin cells (2000) Biophys J, 79, pp. 1800-1820. , COI: 1:CAS:528:DC%2BD3cXnt12hsbY%3D, PID: 11023887 
504 |a Marengo, F.D., Monck, J.R., Spatial distribution of Ca(2+) signals during repetitive depolarizing stimuli in adrenal chromaffin cells (2003) Biophys J, 85, pp. 3397-3417. , COI: 1:CAS:528:DC%2BD3sXptFWqsLw%3D, PID: 14581241 
504 |a Martinez-Espinosa, P.L., Yang, C., Gonzalez-Perez, V., Xia, X.M., Lingle, C.J., Knockout of the BK beta 2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity (2014) J Gen Physiol, 144, pp. 275-295. , COI: 1:CAS:528:DC%2BC2cXitFWlsb%2FI, PID: 25267913 
504 |a Maximov, A., Tang, J., Yang, X., Pang, Z.P., Südhof, T.C., Complexin controls the force transfer from SNARE complexes to membranes in fusion (2009) Science, 323, pp. 516-521. , COI: 1:CAS:528:DC%2BD1MXntFWksQ%3D%3D, PID: 19164751 
504 |a Mohrmann, R., de Wit, H., Connell, E., Pinheiro, P.S., Leese, C., Bruns, D., Davletov, B., Sørensen, J.B., Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering (2013) J Neurosci, 33, pp. 14417-14430. , COI: 1:CAS:528:DC%2BC3sXhsVenurbL, PID: 24005294 
504 |a Monck, J.R., Robinson, I.M., Escobar, A.L., Vergara, J.L., Fernandez, J.M., Pulsed laser imaging of rapid Ca2+ gradients in excitable cells (1994) Biophys J, 67, pp. 505-514. , COI: 1:CAS:528:DyaK2cXlsFamsbg%3D, PID: 7948669 
504 |a Moser, T., Neher, E., Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices (1997) J Neurosci, 17, pp. 2314-2323. , COI: 1:CAS:528:DyaK2sXitV2isr8%3D, PID: 9065492 
504 |a Moya-Diaz, J., Alvarez, Y.D., Montenegro, M., Bayones, L., Belingheri, A.V., Gonzalez-Jamett, A.M., Cardenas, A.M., Marengo, F.D., Sustained exocytosis after action potential-like stimulation at low frequencies in mouse chromaffin cells depends on a dynamin-dependent fast endocytotic process (2016) Front Cell Neurosci, 10, p. 184. , PID: 27507935 
504 |a Nagy, G., Kim, J.H., Pang, Z.P., Matti, U., Rettig, J., Südhof, T.C., Sørensen, J.B., Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation (2006) J Neurosci, 26, pp. 632-643. , COI: 1:CAS:528:DC%2BD28XosFWqtA%3D%3D, PID: 16407561 
504 |a Neco, P., Fernández-Peruchena, C., Navas, S., Gutiérrez, L.M., de Toledo, G.A., Alés, E., Myosin II contributes to fusion pore expansion during exocytosis (2008) J Biol Chem, 283, pp. 10949-10957. , COI: 1:CAS:528:DC%2BD1cXksFagurw%3D, PID: 18283106 
504 |a Neco, P., Giner, D., Viniegra, S., Borges, R., Villarroel, A., Gutiérrez, L.M., New roles of myosin II during vesicle transport and fusion in chromaffin cells (2004) J Biol Chem, 279, pp. 27450-27457. , COI: 1:CAS:528:DC%2BD2cXkvFGnt7c%3D, PID: 15069078 
504 |a Neher, E., Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release (1998) Neuron, 20, pp. 389-399. , COI: 1:CAS:528:DyaK1cXit1Gmsrg%3D, PID: 9539117 
504 |a Neher, E., Augustine, G.J., Calcium gradients and buffers in bovine chromaffin cells (1992) J Physiol, 450, pp. 273-301. , COI: 1:STN:280:DyaK3s%2FlvVKmsg%3D%3D, PID: 1331424 
504 |a Neher, E., Zucker, R.S., Multiple calcium-dependent processes related to secretion in bovine chromaffin cells (1993) Neuron, 10, pp. 21-30. , COI: 1:CAS:528:DyaK3sXhs1Gku70%3D, PID: 8427700 
504 |a Ngatchou, A.N., Kisler, K., Fang, Q., Walter, A.M., Zhao, Y., Bruns, D., Sørensen, J.B., Lindau, M., Role of the synaptobrevin C terminus in fusion pore formation (2010) Proc Natl Acad Sci U S A, 107, pp. 18463-18468. , COI: 1:CAS:528:DC%2BC3cXhtl2ktrrM, PID: 20937897 
504 |a Nguyen Truong, C.Q., Nestvogel, D., Ratai, O., Schirra, C., Stevens, D.R., Brose, N., Rhee, J., Rettig, J., Secretory vesicle priming by CAPS is independent of its SNARE-binding MUN domain (2014) Cell Rep, 9, pp. 902-909. , COI: 1:CAS:528:DC%2BC2cXhvVantbbP, PID: 25437547 
504 |a Novara, M., Baldelli, P., Cavallari, D., Carabelli, V., Giancippoli, A., Carbone, E., Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins (2004) J Physiol, 558, pp. 433-449. , COI: 1:CAS:528:DC%2BD2cXmtlKitL0%3D, PID: 15133061 
504 |a Nowycky, M.C., Pinter, M.J., Time courses of calcium and calcium-bound buffers following calcium influx in a model cell (1993) Biophys J, 64, pp. 77-91. , COI: 1:CAS:528:DyaK3sXpvFShsg%3D%3D, PID: 8431551 
504 |a Oelkers, M., Witt, H., Halder, P., Jahn, R., Janshoff, A., SNARE-mediated membrane fusion trajectories derived from force-clamp experiments (2016) Proc Natl Acad Sci U S A, 113, pp. 13051-13056. , COI: 1:CAS:528:DC%2BC28XhslOmt7rL, PID: 27807132 
504 |a Olivares, M.J., González-Jamett, A.M., Guerra, M.J., Baez-Matus, X., Haro-Acuña, V., Martínez-Quiles, N., Cárdenas, A.M., Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells (2014) PLoS One, 9. , PID: 24901433 
504 |a O’Sullivan, A.J., Cheek, T.R., Moreton, R.B., Berridge, M.J., Burgoyne, R.D., Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2 (1989) EMBO J, 8, pp. 401-411. , PID: 2721487 
504 |a Papadopulos, A., Gomez, G.A., Martin, S., Jackson, J., Gormal, R.S., Keating, D.J., Yap, A.S., Meunier, F.A., Activity-driven relaxation of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking (2015) Nat Commun, 6, p. 6297. , COI: 1:CAS:528:DC%2BC2MXhtF2it77M, PID: 25708831 
504 |a Papadopulos, A., Martin, S., Tomatis, V.M., Gormal, R.S., Meunier, F.A., Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites (2013) J Neurosci, 33, pp. 19143-19153. , COI: 1:CAS:528:DC%2BC3sXhvFSqu7nO, PID: 24305811 
504 |a Parsaud, L., Li, L., Jung, C.H., Park, S., Saw, N.M., Park, S., Kim, M.Y., Sugita, S., Calcium-dependent activator protein for secretion 1 (CAPS1) binds to syntaxin-1 in a distinct mode from Munc13-1 (2013) J Biol Chem, 288, pp. 23050-23063. , COI: 1:CAS:528:DC%2BC3sXht1GjsrrI, PID: 23801330 
504 |a Pasche, M., Matti, U., Hof, D., Rettig, J., Becherer, U., Docking of LDCVs is modulated by lower intracellular [Ca2+] than priming (2012) PLoS One, 7. , COI: 1:CAS:528:DC%2BC38Xns1Ggsrw%3D, PID: 22590540 
504 |a Pérez-Lara, Á., Thapa, A., Nyenhuis, S.B., Nyenhuis, D.A., Halder, P., Tietzel, M., Tittmann, K., Jahn, R., PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium (2016) eLife, 5 
504 |a Perrais, D., Kleppe, I.C., Taraska, J.W., Almers, W., Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells (2004) J Physiol, 560, pp. 413-428. , COI: 1:CAS:528:DC%2BD2cXpslKltLg%3D, PID: 15297569 
504 |a Pinheiro, P.S., Houy, S., Sørensen, J.B., C2-domain containing calcium sensors in neuroendocrine secretion (2016) J Neurochem, 139, pp. 943-958. , COI: 1:CAS:528:DC%2BC28XhvVWmu7vN, PID: 27731902 
504 |a Rao, T.C., Passmore, D.R., Peleman, A.R., Das, M., Chapman, E.R., Anantharam, A., Distinct fusion properties of synaptotagmin-1 and synaptotagmin-7 bearing dense core granules (2014) Mol Biol Cell, 25, pp. 2416-2427. , PID: 24943843 
504 |a Rudolf, R., Salm, T., Rustom, A., Gerdes, H.H., Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering (2001) Mol Biol Cell, 12, pp. 1353-1365. , COI: 1:CAS:528:DC%2BD3MXjslWhsbw%3D, PID: 11359927 
504 |a Samasilp, P., Chan, S.A., Smith, C., Activity-dependent fusion pore expansion regulated by a calcineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells (2012) J Neurosci, 32, pp. 10438-10447. , COI: 1:CAS:528:DC%2BC38XhtFart7rK, PID: 22836276 
504 |a Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K., McNew, J.A., Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I (2006) Nat Struct Mol Biol, 13, pp. 748-750. , COI: 1:CAS:528:DC%2BD28Xnsl2jt7o%3D, PID: 16845390 
504 |a Segovia, M., Alés, E., Montes, M.A., Bonifas, I., Jemal, I., Lindau, M., Maximov, A., Alvarez de Toledo, G., Push-and-pull regulation of the fusion pore by synaptotagmin-7 (2010) Proc Natl Acad Sci U S A, 107, pp. 11907-19032. , COI: 1:CAS:528:DC%2BC3cXhsVCqsbvP, PID: 20956309 
504 |a Segura, J., Gil, A., Soria, B., Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters (2000) Biophys J, 79, pp. 1771-1786. , COI: 1:CAS:528:DC%2BD3cXnt12hsbg%3D, PID: 11023885 
504 |a Shupliakov, O., Haucke, V., Pechstein, A., How synapsin I may cluster synaptic vesicles (2011) Semin Cell Dev Biol, 22, pp. 393-399. , COI: 1:CAS:528:DC%2BC3MXhtF2jt7fP, PID: 21798362 
504 |a Simon, S.M., Llinas, R.R., Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release (1985) Biophys J, 48, pp. 485-498. , COI: 1:CAS:528:DyaL2MXltlGqsLw%3D, PID: 2412607 
504 |a Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., Rothman, J.E., A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion (1993) Cell, 75, pp. 409-418. , PID: 8221884 
504 |a Sorensen, J.B., Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles (2004) Pflugers Archiv, 448, pp. 347-362. , COI: 1:CAS:528:DC%2BD2cXltVSnu70%3D, PID: 14997396 
504 |a Stevens, D.R., Schirra, C., Becherer, U., Rettig, J., Vesicle pools: lessons from adrenal chromaffin cells (2011) Front Synaptic Neurosci, 3, p. 2. , COI: 1:CAS:528:DC%2BC3MXpt12gu7o%3D, PID: 21423410 
504 |a Südhof, T.C., Rothman, J.E., Membrane fusion: grappling with SNARE and SM proteins (2009) Science, 323, pp. 474-477. , PID: 19164740 
504 |a Takahashi, H., Shahin, V., Henderson, R.M., Takeyasu, K., Edwardson, J.M., Interaction of synaptotagmin with lipid bilayers, analyzed by single-molecule force spectroscopy (2010) Biophys J, 99, pp. 2550-2558. , COI: 1:CAS:528:DC%2BC3cXhtlShsbbP, PID: 20959096 
504 |a Tomatis, V.M., Papadopulos, A., Malintan, N.T., Martin, S., Wallis, T., Gormal, R.S., Kendrick-Jones, J., Meunier, F.A., Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin (2013) J Cell Biol, 200, pp. 301-320. , COI: 1:CAS:528:DC%2BC3sXitFemsbo%3D, PID: 23382463 
504 |a Toonen, R.F., Kochubey, O., de Wit, H., Gulyas-Kovacs, A., Konijnenburg, B., Sørensen, J.B., Klingauf, J., Verhage, M., Dissecting docking and tethering of secretory vesicles at the target membrane (2006) EMBO J, 25, pp. 3725-3737. , COI: 1:CAS:528:DC%2BD28XovVSqu7w%3D, PID: 16902411 
504 |a Toonen, R.F., Verhage, M., Munc18-1 in secretion: lonely Munc joins SNARE team and takes control (2007) Trends Neurosci, 30, pp. 564-572. , COI: 1:CAS:528:DC%2BD2sXht12gu7bO, PID: 17956762 
504 |a Torregrosa-Hetland, C.J., Villanueva, J., Giner, D., Lopez-Font, I., Nadal, A., Quesada, I., Viniegra, S., Gutiérrez, L.M., The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells (2011) J Cell Sci, 124, pp. 727-734. , COI: 1:CAS:528:DC%2BC3MXktVOrurc%3D, PID: 21303931 
504 |a Torregrosa-Hetland, C.J., Villanueva, J., López-Font, I., Garcia-Martinez, V., Gil, A., Gonzalez-Vélez, V., Segura, J., Gutiérrez, L.M., Association of SNAREs and calcium channels with the borders of cytoskeletal cages organizes the secretory machinery in chromaffin cells (2010) Cell Mol Neurobiol, 30, pp. 1315-1319. , COI: 1:CAS:528:DC%2BC3cXhs1Wns77J, PID: 21046460 
504 |a Trouillon, R., Ewing, A.G., Amperometric measurements at cells support a role for dynamin in the dilation of the fusion pore during exocytosis (2013) ChemPhysChem, 14, pp. 2295-2301. , COI: 1:CAS:528:DC%2BC3sXhtVCqu7bM, PID: 23824748 
504 |a Tryoen-Tóth, P., Chasserot-Golaz, S., Tu, A., Gherib, P., Bader, M.F., Beaumelle, B., Vitale, N., HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate (2013) J Cell Sci, 126, pp. 454-463. , PID: 23178941 
504 |a Tsai, C.C., Yang, C.C., Shih, P.Y., Wu, C.S., Chen, C.D., Pan, C.Y., Chen, Y.T., Exocytosis of a single bovine adrenal chromaffin cell: the electrical and morphological studies (2008) J Phys Chem B, 112, pp. 9165-9173. , COI: 1:CAS:528:DC%2BD1cXotFGqs7Y%3D, PID: 18598074 
504 |a Umbrecht-Jenck, E., Demais, V., Calco, V., Bailly, Y., Bader, M.F., Chasserot-Golaz, S., S100A10-mediated translocation of annexin-A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis (2010) Traffic, 11, pp. 958-971. , COI: 1:CAS:528:DC%2BC3cXotFGrtrc%3D, PID: 20374557 
504 |a van Weering, J.R., Wijntjes, R., de Wit, H., Wortel, J., Cornelisse, L.N., Veldkamp, W.J., Verhage, M., Automated analysis of secretory vesicle distribution at the ultrastructural level (2008) J Neurosci Methods, 173, pp. 83-90. , PID: 18577400 
504 |a Vandael, D.H., Ottaviani, M.M., Legros, C., Lefort, C., Guerineau, N.C., Allio, A., Carabelli, V., Carbone, E., Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells (2015) J Physiol, 593, pp. 905-927. , COI: 1:CAS:528:DC%2BC2MXisFemt7s%3D, PID: 25620605 
504 |a Villalobos, C., Nunez, L., Montero, M., Garcia, A.G., Alonso, M.T., Chamero, P., Alvarez, J., Garcia-Sancho, J., Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells (2002) FASEB J, 16, pp. 343-353. , COI: 1:CAS:528:DC%2BD38XhvVCmt7Y%3D, PID: 11874983 
504 |a Villanueva, M., Thornley, K., Augustine, G.J., Wightman, R.M., Synapsin II negatively regulates catecholamine release (2006) Brain Cell Biol, 35, pp. 125-136. , COI: 1:CAS:528:DC%2BD2sXht1anu7rM, PID: 17957479 
504 |a Vitale, M.L., Seward, E.P., Trifaró, J.M., Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis (1995) Neuron, 14, pp. 353-363. , COI: 1:CAS:528:DyaK2MXjvFejs7k%3D, PID: 7857644 
504 |a Voets, T., Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices (2000) Neuron, 28, pp. 537-545. , COI: 1:CAS:528:DC%2BD3cXoslaisbg%3D, PID: 11144362 
504 |a Voets, T., Moser, T., Lund, P.E., Chow, R.H., Geppert, M., Sudhof, T.C., Neher, E., Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I (2001) Proc Natl Acad Sci U S A, 98, pp. 11680-11685. , COI: 1:CAS:528:DC%2BD3MXnt12jsLc%3D, PID: 11562488 
504 |a Voets, T., Neher, E., Moser, T., Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices (1999) Neuron, 23, pp. 607-615. , COI: 1:CAS:528:DyaK1MXltVynu78%3D, PID: 10433271 
504 |a Voets, T., Toonen, R.F., Brian, E.C., de Wit, H., Moser, T., Rettig, J., Südhof, T.C., Verhage, M., Munc18-1 promotes large dense-core vesicle docking (2001) Neuron, 31, pp. 581-591. , COI: 1:CAS:528:DC%2BD3MXmvV2itbY%3D, PID: 11545717 
504 |a Walter, A.M., Pinheiro, P.S., Verhage, M., Sorensen, J.B., A sequential vesicle pool model with a single release sensor and a Ca(2+)-dependent priming catalyst effectively explains Ca(2+)-dependent properties of neurosecretion (2013) PLoS Comput Biol, 9. , PID: 24339761 
504 |a Wang, C.T., Bai, J., Chang, P.Y., Chapman, E.R., Jackson, M.B., Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation (2006) J Physiol, 570, pp. 295-307. , COI: 1:CAS:528:DC%2BD28XmtV2itg%3D%3D, PID: 16293646 
504 |a Wang, S., Li, Y., Ma, C., Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion (2016) eLife, 5 
504 |a Wang, Z., Liu, H., Gu, Y., Chapman, E.R., Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion (2011) J Cell Biol, 195, pp. 1159-1170. , COI: 1:CAS:528:DC%2BC38XktlGrsg%3D%3D, PID: 22184197 
504 |a Wen, P.J., Grenklo, S., Arpino, G., Tan, X., Liao, H.S., Heureaux, J., Peng, S.Y., Wu, L.G., Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane (2016) Nat Commun, 7, p. 12604. , COI: 1:CAS:528:DC%2BC28XhsVKqsrvJ, PID: 27576662 
504 |a Wu, Z., Bello, O.D., Thiyagarajan, S., Auclair, S.M., Vennekate, W., Krishnakumar, S.S., O'Shaughnessy, B., Karatekin, E., Dilation of fusion pores by crowding of SNARE proteins (2017) eLife, 6 
504 |a Wykes, R.C., Bauer, C.S., Khan, S.U., Weiss, J.L., Seward, E.P., Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells (2007) J Neurosci, 27, pp. 5236-5248. , COI: 1:CAS:528:DC%2BD2sXmtVWrtrk%3D, PID: 17494710 
504 |a Zhou, Q., Lai, Y., Bacaj, T., Zhao, M., Lyubimov, A.Y., Uervirojnangkoorn, M., Zeldin, O.B., Brunger, A.T., Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis (2015) Nature, 525, pp. 62-67. , COI: 1:CAS:528:DC%2BC2MXhtlGgurfN, PID: 26280336 
504 |a Zhou, Z., Misler, S., Action potential-induced quantal secretion of catecholamines from rat adrenal chromaffin cells (1995) J Biol Chem, 270, pp. 3498-3505. , COI: 1:CAS:528:DyaK2MXjvVyku7o%3D, PID: 7876083 
520 3 |a The extent and type of hormones and active peptides secreted by the chromaffin cells of the adrenal medulla have to be adjusted to physiological requirements. The chromaffin cell secretory activity is controlled by the splanchnic nerve firing frequency, which goes from approximately 0.5 Hz in basal conditions to more than 15 Hz in stress. Thus, these neuroendocrine cells maintain a tonic release of catecholamines under resting conditions, massively discharge intravesicular transmitters in response to stress, or adequately respond to moderate stimuli. In order to adjust the secretory response to the stimulus, the adrenal chromaffin cells have an appropriate organization of Ca2+ channels, secretory granules pools, and sets of proteins dedicated to selectively control different steps of the secretion process, such as the traffic, docking, priming and fusion of the chromaffin granules. Among the molecules implicated in such events are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Ca2+ sensors like Munc13 and synaptotagmin-1, chaperon proteins such as Munc18, and the actomyosin complex. In the present review, we discuss how these different actors contribute to the extent and maintenance of the stimulus-dependent exocytosis in the adrenal chromaffin cells. © 2017, Springer-Verlag GmbH Germany.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, UBACyT 2014-2017 
536 |a Detalles de la financiación: Fondo Nacional de Desarrollo Científico y Tecnológico, P09-022-F, 1160495 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Ministerio de Economía, Fomento y Turismo 
536 |a Detalles de la financiación: PICT 0524-2014 
536 |a Detalles de la financiación: Acknowledgements This work has been supported by the grants FONDECYT 1160495 (Chile), P09-022-F from ICM-ECONOMIA (Chile), PICT 0524-2014 from Agencia Nacional de Promoción Científica y Tecnológica (Argentina), and UBACyT 2014-2017 from Universidad de Buenos Aires (Argentina). The Centro Interdisciplinario de Neurociencia de Valparaíso (CINV) is a Millennium Institute supported by the Millennium Scientific Initiative of the Ministerio de Economía, Fomento y Turismo. 
593 |a Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile 
690 1 0 |a CATECHOLAMINES 
690 1 0 |a CHROMAFFIN CELLS 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a VESICLE POOLS 
690 1 0 |a VOLTAGE-DEPENDENT CA2+ CHANNELS 
690 1 0 |a CALCIUM CHANNEL 
690 1 0 |a MUNC13 PROTEIN 
690 1 0 |a MUNC18 PROTEIN 
690 1 0 |a MYOSIN ADENOSINE TRIPHOSPHATASE 
690 1 0 |a PROTEIN 
690 1 0 |a SNARE PROTEIN 
690 1 0 |a SYNAPTOTAGMIN I 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a CALCIUM CHANNEL 
690 1 0 |a VESICULAR TRANSPORT PROTEIN 
690 1 0 |a ADRENAL CHROMAFFIN CELL 
690 1 0 |a CALCIUM SIGNALING 
690 1 0 |a CELL FUSION 
690 1 0 |a CELL MEMBRANE 
690 1 0 |a CHROMAFFIN GRANULE 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a REVIEW 
690 1 0 |a SECRETORY GRANULE 
690 1 0 |a STIMULUS 
690 1 0 |a ADRENAL MEDULLA 
690 1 0 |a ANIMAL 
690 1 0 |a HUMAN 
690 1 0 |a METABOLISM 
690 1 0 |a SECRETION (PROCESS) 
690 1 0 |a ADRENAL MEDULLA 
690 1 0 |a ANIMALS 
690 1 0 |a CALCIUM CHANNELS 
690 1 0 |a CHROMAFFIN GRANULES 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a HUMANS 
690 1 0 |a VESICULAR TRANSPORT PROTEINS 
700 1 |a Cárdenas, A.M. 
773 0 |d Springer Verlag, 2018  |g v. 470  |h pp. 155-167  |k n. 1  |p Pflug. Arch. Eur. J. Physiol.  |x 00316768  |w (AR-BaUEN)CENRE-6434  |t Pflugers Archiv European Journal of Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028775504&doi=10.1007%2fs00424-017-2052-5&partnerID=40&md5=2600e861200dbad7a912d1d7c77cb53b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00424-017-2052-5  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00316768_v470_n1_p155_Marengo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00316768_v470_n1_p155_Marengo  |y Registro en la Biblioteca Digital 
961 |a paper_00316768_v470_n1_p155_Marengo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78199