Approximating weighted neighborhood independent sets

A neighborhood independent set (NI-set) is a subset of edges in a graph such that the closed neighborhood of any vertex contains at most one edge of the subset. Finding a maximum cardinality NI-set is an NP-complete problem. We consider the weighted version of this problem. For general graphs we giv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lin, M.C
Otros Autores: Mestre, J., Vasiliev, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05210caa a22006737a 4500
001 PAPER-17166
003 AR-BaUEN
005 20230518204819.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85030465939 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IFPLA 
100 1 |a Lin, M.C. 
245 1 0 |a Approximating weighted neighborhood independent sets 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Vasiliev, S.; CONICET, Instituto de Cálculo, FCEyN, Universidad de Buenos AiresArgentina; email: svassiliev@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Lehel, J., Tuza, Z., Neighborhood perfect graphs (1986) Discrete Math., 61 (1), pp. 93-101 
504 |a Wu, J., Neighborhood-covering and neighborhood-independence in strongly chordal graphs, preprint; Chang, G.J., Farber, M., Tuza, Z., Algorithmic aspects of neighborhood numbers (1993) SIAM J. Discrete Math., 6 (1), pp. 24-29 
504 |a Guruswami, V., Rangan, C.P., Algorithmic aspects of clique-transversal and clique-independent sets (2000) Discrete Appl. Math., 100 (3), pp. 183-202 
504 |a Warnes, X., Structural and Algorithmic Results on Neighborhood-Perfect Graphs and Neighborhood Numbers (2014), Master's thesis Departmento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Argentina; Gyárfás, A., Kratsch, D., Lehel, J., Maffray, F., Minimal non-neighborhood-perfect graphs (1996) J. Graph Theory, 21 (1), pp. 55-66 
504 |a Lehel, J., Neighbourhood-perfect line graphs (1994) Graphs Comb., 10 (2), pp. 353-361 
504 |a Hwang, S.-F., Chang, G.J., k-Neighborhood-covering and -independence problems for chordal graphs (1998) SIAM J. Discrete Math., 11 (4), pp. 633-643 
504 |a Trevisan, L., Non-approximability results for optimization problems on bounded degree instances (2001) Proceedings of STOC, pp. 453-461 
504 |a Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D., Local ratio: a unified framework for approximation algorithms – In memoriam: Shimon Even 1935–2004 (2004) ACM Comput. Surv., 36 (4), pp. 422-463 
504 |a Canzar, S., Elbassioni, K.M., Klau, G.W., Mestre, J., On tree-constrained matchings and generalizations (2015) Algorithmica, 71 (1), pp. 98-119 
504 |a Corneil, D.G., Perl, Y., Stewart, L.K., A linear recognition algorithm for cographs (1985) SIAM J. Comput., 14 (4), pp. 926-934 
504 |a Corneil, D., Lerchs, H., Burlingham, L., Complement reducible graphs (1981) Discrete Appl. Math., 3 (3), pp. 163-174 
520 3 |a A neighborhood independent set (NI-set) is a subset of edges in a graph such that the closed neighborhood of any vertex contains at most one edge of the subset. Finding a maximum cardinality NI-set is an NP-complete problem. We consider the weighted version of this problem. For general graphs we give an algorithm with approximation ratio Δ, and for diamond-free graphs we give a ratio Δ/2+1, where Δ is the maximum degree of the input graph. Furthermore, we show that the problem is polynomially solvable on cographs. Finally, we give a tight upper bound on the cardinality of a NI-set on regular graphs. © 2017  |l eng 
536 |a Detalles de la financiación: 2013-2205 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 20020120100058 
536 |a Detalles de la financiación: We appreciate the comments of the reviewers, which significantly helped us improving the presentation and clarity of this work. This work was partially supported by UBACyT Grant 20020120100058 , and PICT ANPCyT Grant 2013-2205 . 
593 |a CONICET, Instituto de Cálculo, FCEyN, Universidad de Buenos Aires, Argentina 
593 |a The University of Sydney, Australia 
690 1 0 |a APPROXIMATION ALGORITHMS 
690 1 0 |a GRAPH ALGORITHMS 
690 1 0 |a WEIGHTED NEIGHBORHOOD INDEPENDENT SET 
690 1 0 |a APPROXIMATION ALGORITHMS 
690 1 0 |a COMPUTATIONAL COMPLEXITY 
690 1 0 |a PROBLEM SOLVING 
690 1 0 |a APPROXIMATION RATIOS 
690 1 0 |a DIAMOND-FREE GRAPHS 
690 1 0 |a GENERAL GRAPH 
690 1 0 |a GRAPH ALGORITHMS 
690 1 0 |a INDEPENDENT SET 
690 1 0 |a MAXIMUM DEGREE 
690 1 0 |a POLYNOMIALLY SOLVABLE 
690 1 0 |a REGULAR GRAPHS 
690 1 0 |a GRAPH THEORY 
700 1 |a Mestre, J. 
700 1 |a Vasiliev, S. 
773 0 |d Elsevier B.V., 2018  |g v. 130  |h pp. 11-15  |p Inf. Process. Lett.  |x 00200190  |w (AR-BaUEN)CENRE-1599  |t Information Processing Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030465939&doi=10.1016%2fj.ipl.2017.09.014&partnerID=40&md5=b404b29a46bed8b560ca4e7ffe1a1067  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ipl.2017.09.014  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00200190_v130_n_p11_Lin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00200190_v130_n_p11_Lin  |y Registro en la Biblioteca Digital 
961 |a paper_00200190_v130_n_p11_Lin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78119