Neural coding of sound envelope structure in songbirds

Songbirds are a well-established animal model to study the neural basis of learning, perception and production of complex vocalizations. In this system, telencephalic neurons in HVC present a state-dependent, highly selective response to auditory presentations of the bird’s own song (BOS). This prop...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boari, S.
Otros Autores: Amador, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13384caa a22009497a 4500
001 PAPER-17099
003 AR-BaUEN
005 20230518204814.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85037740348 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCPAD 
100 1 |a Boari, S. 
245 1 0 |a Neural coding of sound envelope structure in songbirds 
260 |b Springer Verlag  |c 2018 
270 1 0 |m Amador, A.; Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Intendente Guiraldes 2160, Pabellon 1, Ciudad Universitaria, Argentina; email: anita@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alonso, R., Goller, F., Mindlin, G.B., Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension (2014) Phys Rev E, 89 (3), p. 32706 
504 |a Amador, A., Margoliash, D., A mechanism for frequency modulation in songbirds shared with humans (2013) J Neurosci, 33 (27), pp. 11136-11144. , COI: 1:CAS:528:DC%2BC3sXhtFWjtrbK, PID: 23825417 
504 |a Amador, A., Sanz Perl, Y., Mindlin, G.B., Margoliash, D., Elemental gesture dynamics are encoded by song premotor cortical neurons (2013) Nature, 495, pp. 59-64. , COI: 1:CAS:528:DC%2BC3sXjsFeqtrs%3D, PID: 23446354 
504 |a Boari, S., Perl, Y.S., Amador, A., Margoliash, D., Mindlin, G.B., Automatic reconstruction of physiological gestures used in a model of birdsong production (2015) J Neurophysiol, 114 (5), pp. 2912-2922. , COI: 1:CAS:528:DC%2BC28XhsVClsrrP, PID: 26378204 
504 |a Boersma, P., Van Heuven, V., Speak and unSpeak with PRAAT (2001) Glot International, 5 (9-10), pp. 341-347 
504 |a Brainard, M.S., Doupe, A.J., Interruption of a basal ganglia–forebrain circuit prevents plasticity of learned vocalizations (2000) Nature, 404 (6779), pp. 762-766. , COI: 1:CAS:528:DC%2BD3cXjtVamtL8%3D, PID: 10783889 
504 |a Bregman, M.R., Patel, A.D., Gentner, T.Q., Songbirds use spectral shape, not pitch, for sound pattern recognition (2016) Proc Natl Acad Sci USA, 113 (6), pp. 1666-1671. , COI: 1:CAS:528:DC%2BC28Xhtlamtbs%3D, PID: 26811447 
504 |a Caclin, A., McAdams, S., Smith, B.K., Winsberg, S., Acoustic correlates of timbre space dimensions: a confirmatory study using synthetic tones (2005) J Acoust Soc Am, 118 (1), pp. 471-482. , PID: 16119366 
504 |a Dave, A.S., Margoliash, D., Song replay during sleep and computational rules for sensorimotor vocal learning (2000) Science, 290 (5492), pp. 812-816. , COI: 1:CAS:528:DC%2BD3cXns1artr8%3D, PID: 11052946 
504 |a Dooling, R.J., Prior, N.H., Do we hear what birds hear in birdsong? (2017) Anim Behav, 124, pp. 283-289 
504 |a Dooling, R.J., Lohr, B., Dent, M.L., Hearing in birds and reptiles (2000) Comparative hearing: birds and reptiles, pp. 308-359. , Dooling RJ, Fay RR, (eds), Springer-Verlag, New York 
504 |a Dooling, R.J., Leek, M.R., Gleich, O., Dent, M.L., Auditory temporal resolution in birds: discrimination of harmonic complexes (2002) J Acoust Soc Am, 112 (2), pp. 748-759. , PID: 12186054 
504 |a Doupe, A.J., Konishi, M., Song-selective auditory circuits in the vocal control system of the zebra finch (1991) Proc Natl Acad Sci USA, 88 (24), pp. 11339-11343. , COI: 1:STN:280:DyaK387gsl2ntw%3D%3D, PID: 1763048 
504 |a Doupe, A.J., Kuhl, P.K., Birdsong and human speech: common themes and mechanisms (1999) Annu Rev Neurosci, 22, pp. 567-631. , COI: 1:CAS:528:DyaK1MXhvFems7c%3D, PID: 10202549 
504 |a Drennan, W.R., Rubinstein, J.T., Music perception in cochlear implant users and its relationship with psychophysical capabilities (2008) J Rehabil Res Dev, 45 (5), p. 779. , PID: 18816426 
504 |a Feher, O., Wang, H.B., Saar, S., Mitra, P.P., Tchernichovski, O., De novo establishment of wild-type song culture in the zebra finch (2009) Nature, 459 (7246), pp. U564-U594 
504 |a Franz, M., Goller, F., Respiratory units of motor production and song imitation in the zebra finch (2002) ‎Dev Neurobiol, 51 (2), pp. 129-141 
504 |a Grace, J.A., Amin, N., Singh, N.C., Theunissen, F.E., Selectivity for conspecific song in the zebra finch auditory forebrain (2003) J Neurophysiol, 89 (1), pp. 472-487. , PID: 12522195 
504 |a Iverson, P., Krumhansl, C.L., Isolating the dynamic attributes of musical timbre (1993) J Acoust Soc Am, 94 (5), pp. 2595-2603. , COI: 1:STN:280:DyaK2c%2FpsFOktQ%3D%3D, PID: 8270737 
504 |a Kong, Y.-Y., Mullangi, A., Marozeau, J., Epstein, M., Temporal and spectral cues for musical timbre perception in electric hearing (2011) J Speech Lang Hear Res, 54 (3), pp. 981-994. , PID: 21060140 
504 |a Krimphoff, J., McAdams, S., Winsberg, S., Caractérisation du timbre des sons complexes. II. Analyses acoustiques et quantification psychophysique (1994) Le Journal de Physique IV, 4 (C5), pp. C625-C628 
504 |a Lewicki, M.S., Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain (1996) J Neurosci, 16 (18), pp. 5854-5863. , COI: 1:CAS:528:DyaK28XlsFOhsro%3D 
504 |a Margoliash, D., Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow (1983) J Neurosci, 3 (5), pp. 1039-1057. , COI: 1:STN:280:DyaL3s7ovVeitg%3D%3D, PID: 6842281 
504 |a Margoliash, D., Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow (1986) J Neurosci, 6 (6), pp. 1643-1661. , COI: 1:STN:280:DyaL283is1GjtQ%3D%3D, PID: 3712002 
504 |a Margoliash, D., Fortune, E.S., Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc (1992) J Neurosci, 12 (11), pp. 4309-4326. , COI: 1:STN:280:DyaK3s%2FlslOrtA%3D%3D, PID: 1432096 
504 |a Margoliash, D., Fortune, E.S., Sutter, M.L., Yu, A.C., Wrenhardin, B.D., Dave, A., Distributed representation in the song system of Oscines: evolutionary implications and functional consequences (1994) Brain Behav Evol, 44 (4-5), pp. 247-264. , COI: 1:STN:280:DyaK2M7ksVGjsg%3D%3D, PID: 7842284 
504 |a McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J., Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes (1995) Psychol Res, 58 (3), pp. 177-192. , COI: 1:STN:280:DyaK287jt1aitg%3D%3D, PID: 8570786 
504 |a Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., Experimental support for a model of birdsong production (2003) Phys Rev E, 68 (4), p. 41908. , COI: 1:STN:280:DC%2BD3sngslSntA%3D%3D 
504 |a Mooney, R., Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch (2000) J Neurosci, 20 (14), pp. 5420-5436. , COI: 1:CAS:528:DC%2BD3cXlt1Wiu7w%3D, PID: 10884326 
504 |a Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., Reconstruction of physiological instructions from zebra finch song (2011) Phys Rev E, 84 (5), p. 51909 
504 |a Prather, J.F., Peters, S., Nowicki, S., Mooney, R., Precise auditory-vocal mirroring in neurons for learned vocal communication (2008) Nature, 451 (7176), pp. U302-U305 
504 |a Pressnitzer, D., Bestel, J., Fraysse, B., Music to electric ears: pitch and timbre perception by cochlear implant patients (2005) Ann NY Acad Sci, 1060 (1), pp. 343-345. , PID: 16597784 
504 |a Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y., Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering (2004) Neural Comput, 16 (8), pp. 1661-1687. , PID: 15228749 
504 |a Riede, T., Goller, F., Peripheral mechanisms for vocal production in birds—differences and similarities to human speech and singing (2010) Brain Lang, 115 (1), pp. 69-80. , PID: 20153887 
504 |a Riede, T., Fisher, J.H., Goller, F., Sexual dimorphism of the zebra finch syrinx indicates adaptation for high fundamental frequencies in males (2010) PLoS One, 5 (6). , PID: 20614010 
504 |a Ritschard, M., Brumm, H., Effects of vocal learning, phonetics and inheritance on song amplitude in zebra finches (2011) Anim Behav, 82 (6), pp. 1415-1422 
504 |a Srivastava, K.H., Elemans, C.P., Sober, S.J., Multifunctional and context-dependent control of vocal acoustics by individual muscles (2015) J Neurosci, 35 (42), pp. 14183-14194. , COI: 1:CAS:528:DC%2BC28Xjt1Ghurg%3D, PID: 26490859 
504 |a Theunissen, F.E., Doupe, A.J., Temporal and spectral sensitivity of complex auditory neurons in the nucleus HVc of male zebra finches (1998) J Neurosci, 18 (10), pp. 3786-3802. , COI: 1:CAS:528:DyaK1cXjtVWrtrk%3D, PID: 9570809 
504 |a Theunissen, F.E., Sen, K., Doupe, A.J., Spectral–temporal receptive fields of nonlinear auditory neurons obtained using natural sounds (2000) J Neurosci, 20 (6), pp. 2315-2331. , COI: 1:CAS:528:DC%2BD3cXhvVahu74%3D, PID: 10704507 
504 |a Theunissen, F.E., Amin, N., Shaevitz, S.S., Woolley, S.M.N., Fremouw, T., Hauber, M.E., Song selectivity in the song system and in the auditory forebrain (2004) Ann Ny Acad Sci, 1016, pp. 222-245. , PID: 15313778 
504 |a Thorpe, W.H., (1961) Bird-song: the biology of vocal communication and expression in birds, , Cambridge University Press, Oxford 
504 |a Town, S.M., Bizley, J.K., Neural and behavioral investigations into timbre perception (2013) Front Syst Neurosci, p. 7 
504 |a Volman, S., Quantitative assessment of song-selectivity in the zebra finch “high vocal center (1996) J Comp Physiol A, 178 (6), pp. 849-862. , COI: 1:STN:280:DyaK283hsVKktg%3D%3D, PID: 8667295 
520 3 |a Songbirds are a well-established animal model to study the neural basis of learning, perception and production of complex vocalizations. In this system, telencephalic neurons in HVC present a state-dependent, highly selective response to auditory presentations of the bird’s own song (BOS). This property provides an opportunity to study the neural code behind a complex motor behavior. In this work, we explore whether changes in the temporal structure of the sound envelope can drive changes in the neural responses of highly selective HVC units. We generated an envelope-modified BOS (MOD) by reversing each syllable’s envelope but leaving the overall temporal structure of syllable spectra unchanged, which resulted in a subtle modification for each song syllable. We conducted in vivo electrophysiological recordings of HVC neurons in anaesthetized zebra finches (Taeniopygia guttata). Units analyzed presented a high BOS selectivity and lower response to MOD, but preserved the profile response shape. These results show that the temporal evolution of the sound envelope is being sensed by the avian song system and suggest that the biomechanical properties of the vocal apparatus could play a role in enhancing subtle sound differences. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: National Institutes of Health, R01-DC-012859 
536 |a Detalles de la financiación: Acknowledgements We thank Cecilia T. Herbert and Gabriel B. Mind-lin for comments and discussions that greatly improved the manuscript. This work was partially supported by Consejo Nacional de Investi-gaciones Científicas y Técnicas (CONICET, Argentina), Agencia Nacional de Promoción Científica y Tecnológica (ANCyT, Argentina), Universidad de Buenos Aires (UBA, Argentina) and National Institutes of Health (NIH, USA) through grant R01-DC-012859. Experimentation and surgical procedures were conducted following protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Buenos Aires. 
593 |a Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Intendente Guiraldes 2160, Pabellon 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a AUDITORY PROCESSING 
690 1 0 |a BIRDSONG 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a NEURAL CODING 
690 1 0 |a ZEBRA FINCH 
700 1 |a Amador, A. 
773 0 |d Springer Verlag, 2018  |g v. 204  |h pp. 285-294  |k n. 3  |p J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.  |x 03407594  |w (AR-BaUEN)CENRE-233  |t Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037740348&doi=10.1007%2fs00359-017-1238-9&partnerID=40&md5=12f7367b9e7e31ed5c3cfd187ed68384  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00359-017-1238-9  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03407594_v204_n3_p285_Boari  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v204_n3_p285_Boari  |y Registro en la Biblioteca Digital 
961 |a paper_03407594_v204_n3_p285_Boari  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 78052