Stabilization of low-order cross-grid PkQl mixed finite elements

In this paper we analyze a low-order family of mixed finite element methods for the numerical solution of the Stokes problem and a second order elliptic problem, in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approxima...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Armentano, M.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09283caa a22008777a 4500
001 PAPER-17075
003 AR-BaUEN
005 20230518204812.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85029857503 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Armentano, M.G. 
245 1 0 |a Stabilization of low-order cross-grid PkQl mixed finite elements 
260 |b Elsevier B.V.  |c 2018 
506 |2 openaire  |e Política editorial 
504 |a Armentano, M.G., Blasco, J., Stable and unstable cross-grid PkQl mixed finite elements for the Stokes problem (2010) J. Comput. Appl. Math., 234 (5), pp. 1404-1416 
504 |a Badia, S., Codina, R., Stokes, Maxwell and Darcy: A single finite element approximation for three model problems (2012) Appl. Numer. Math., 62, pp. 246-263 
504 |a Boffi, D., Minimal stabilizations of the Pk+1-Pk approximation of the stationary Stokes equations (1995) Math. Models Methods Appl. Sci., 5 (2), pp. 213-224 
504 |a Boffi, D., Gastaldi, L., On the quadrilateral Q2-P1 element for the Stokes problem (2002) Internat. J. Numer. Methods Fluids, 39 (4), pp. 1001-1011 
504 |a Brezzi, F., Falk, R., Stability of higher-order Hood-Taylor methods (1991) SIAM J. Numer. Anal., 28 (3), pp. 581-590 
504 |a Chen, X., Han, W., Huang, H., Analysis of some mixed elements for the Stokes problem (1997) J. Comput. Appl. Math., 85, pp. 19-35 
504 |a Fortin, M., Old and new finite elements for incompressible flows (1981) Internat. J. Numer. Methods Fluids, 1 (4), pp. 347-364 
504 |a Kim, Y., Lee, S., Stable Finite Element Methods for the Stokes Problem (2000) Int. J. Math. Math. Sci., 24 (10), pp. 699-714 
504 |a Kim, Y., Lee, S., Modified Mini finite element for the Stokes problem in R2 or R3 (2000) Adv. Comput. Math., 12, pp. 261-272 
504 |a Taylor, C., Hood, P., A numerical solution of the Navier–Stokes equations using the finite element technique (1973) Int. J. Comput. Fluids, 1 (1), pp. 73-100 
504 |a Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D., Stabilization of low-order mixed finite elements for the Stokes equations (2006) SIAM J. Numer. Anal., 44 (1), pp. 82-101 
504 |a Araya, R., Barrenechea, G.R., Poza, A., An adaptive stabilized finite element method for the generalized Stokes problem (2008) J. Comput. Appl. Math., 214, pp. 457-479 
504 |a Blasco, J., An anisotropic GLS-stabilized finite element method for incompressible flow problems (2008) Comput. Methods Appl. Mech. Engrg., 197, pp. 3712-3723 
504 |a Blasco, J., Codina, R., Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier–Stokes equations (2001) Appl. Numer. Math., 38, pp. 475-497 
504 |a Codina, R., Blasco, J., A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation (1997) Comput. Methods Appl. Mech. Engrg., 143 (3-4), pp. 373-391 
504 |a Codina, R., Blasco, J., Analysis of a pressure-stabilized finite element approximation of the stationary Navier–Stokes equations (2000) Numer. Math., 87, pp. 59-81 
504 |a Kechkar, N., Silvester, D., Analysis of locally stabilized mixed finite element methods for the Stokes problem (1992) Math. Comp., 58 (197), pp. 1-10 
504 |a Kim, Y., Lee, S., Stable finite element methods with divergence augmentation for the Stokes problem (2001) Appl. Math. Lett., 14, pp. 321-326 
504 |a Svácek, P., On approximation of non-Newtonian fluid flow by the finite element method (2008) J. Comput. Appl. Math., 218, pp. 167-174 
504 |a Brezzi, F., Fortin, M., Marini, L.D., Mixed finite element methods with contoinuous stresses (1993) Math. Models Methods Appl. Sci., 3 (2), pp. 275-287 
504 |a Boffi, D., Brezzi, F., Demkowicz, L., Durán, R.G., Falk, R., Fortin, M., (2008) Mixed Finite Elements, Compatibility Conditions, and Applications, Lectures Notes in Mathematics, 1939 
504 |a Brezzi, F., Fortin, M., (1991) Mixed and Hybrid Finite Element Methods, , Springer Berlin Heidelberg, New York 
504 |a Raviart, P.A., Thomas, J.M., A mixed finite element method for second order elliptic problems (1977) Mathematical Aspects of the Finite ElementMethod, Lectures Notes in Math., 606. , Galligani I. Magenes E. Springer Verlag 
504 |a Bochev, P.B., Dohrmann, C.R., A computational study of stabilized, low-order C0 finite element approximations of Darcy equations (2006) Comput. Mech., 38, pp. 323-333 
504 |a Brunner, F., Radu, F., Knabner, P., Analysis of upwind-mixed hybrid finite element method for transport problems (2014) SIAM J. Numer. Anal., 52 (1), pp. 1938-1953 
504 |a Demlow, A., Suboptimal and optimal convergence in mixed element methods (2002) SIAM J. Numer. Anal., 39 (6), pp. 1938-1953 
504 |a Gatica, G.N., Meddahi, S., Oyarzúa, R., A conforming mixed finite-element method for the coupling of fluid flow with porous media flow (2009) IMA J. Numer. Anal., 29, pp. 86-108 
504 |a Stenberg, R., A family of mixed finite element for the elasticity problem (1988) Numer. Math., 53 (190), pp. 513-538 
504 |a Clément, P., Approximation by finite element functions using local regularization (1975) Rev. Fr. Autom. Inform. Recherche Opér. Sér. Rairo Anal. Numér., 9 (R-2), pp. 77-84 
504 |a Girault, V., Raviart, P.A., (1986) Finite Element Methods for Navier–Stokes Equations, , Springer- Verlag Germany, Berlin 
504 |a Ciarlet, P., (1978) The Finite Element Method for Elliptic Problems, , North-Holland Amsterdan 
520 3 |a In this paper we analyze a low-order family of mixed finite element methods for the numerical solution of the Stokes problem and a second order elliptic problem, in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. For the lowest order P1Q0, a global spurious pressure mode is shown to exist and so this element, as P1Q1 case analyzed in Armentano and Blasco (2010), is unstable. However, following the ideas given in Bochev et al. (2006), a simple stabilization procedure can be applied, when we approximate the solution of the Stokes problem, such that the new P1Q0 and P1Q1 methods are unconditionally stable, and achieve optimal accuracy with respect to solution regularity with simple and straightforward implementations. Moreover, we analyze the application of our P1Q1 element to the mixed formulation of the elliptic problem. In this case, by introducing the modified mixed weak form proposed in Brezzi et al. (1993), optimal order of accuracy can be obtained with our stabilized P1Q1 elements. Numerical results are also presented, which confirm the existence of the spurious pressure mode for the P1Q0 element and the excellent stability and accuracy of the new stabilized methods. © 2017 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT 20020130100205BA 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2014-1771 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220130100184CO 
536 |a Detalles de la financiación: This work is devoted to the memory of Jordi Blasco. The author’s work was supported by ANPCyT under grant PICT 2014-1771 , CONICET under grant PIP 11220130100184CO and by Universidad de Buenos Aires under grant UBACyT 20020130100205BA . 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IMAS-Conicet, Buenos Aires, 1428, Argentina 
690 1 0 |a CROSS-GRID ELEMENTS 
690 1 0 |a ELLIPTIC PROBLEMS 
690 1 0 |a MIXED FINITE ELEMENTS 
690 1 0 |a STABILITY ANALYSIS 
690 1 0 |a STOKES PROBLEM 
690 1 0 |a COMPUTATIONAL MECHANICS 
690 1 0 |a MESH GENERATION 
690 1 0 |a NAVIER STOKES EQUATIONS 
690 1 0 |a NUMERICAL METHODS 
690 1 0 |a STABILIZATION 
690 1 0 |a ELLIPTIC PROBLEM 
690 1 0 |a GRID ELEMENTS 
690 1 0 |a MIXED FINITE ELEMENTS 
690 1 0 |a STABILITY ANALYSIS 
690 1 0 |a STOKES PROBLEM 
690 1 0 |a FINITE ELEMENT METHOD 
773 0 |d Elsevier B.V., 2018  |g v. 330  |h pp. 340-355  |p J. Comput. Appl. Math.  |x 03770427  |w (AR-BaUEN)CENRE-1107  |t Journal of Computational and Applied Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029857503&doi=10.1016%2fj.cam.2017.09.002&partnerID=40&md5=f04013d4b93ec824073792405d2f073e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.cam.2017.09.002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03770427_v330_n_p340_Armentano  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03770427_v330_n_p340_Armentano  |y Registro en la Biblioteca Digital 
961 |a paper_03770427_v330_n_p340_Armentano  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78028