Lipophilic Decyl Chain-Pterin Conjugates with Sensitizer Properties

A new series of decyl chain [-(CH2)9CH3] pterin conjugates have been investigated by photochemical and photophysical methods, and with theoretical solubility calculations. To synthesize the pterins, a nucleophilic substitution (SN2) reaction was used for the regioselective coupling of the alkyl chai...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vignoni, M.
Otros Autores: Walalawela, N., Bonesi, S.M, Greer, A., Thomas, A.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19472caa a22015857a 4500
001 PAPER-17074
003 AR-BaUEN
005 20230518204812.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85043253365 
024 7 |2 cas  |a pterin, 2236-60-4; pterin derivative, 948-60-7 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MPOHB 
100 1 |a Vignoni, M. 
245 1 0 |a Lipophilic Decyl Chain-Pterin Conjugates with Sensitizer Properties 
260 |b American Chemical Society  |c 2018 
270 1 0 |m Greer, A.; Department of Chemistry, Brooklyn College, City University of New YorkUnited States; email: agreer@brooklyn.cuny.edu 
506 |2 openaire  |e Política editorial 
504 |a Thomas, A.H., Catala, A., Vignoni, M., Soybean phosphatidylcholine liposomes as model membranes to study lipid peroxidation photoinduced by pterin (2016) Biochim. Biophys. Acta, Biomembr., 1858 (1), pp. 139-145 
504 |a Petroselli, G., Dantola, M.L., Cabrerizo, F.M., Lorente, C., Braun, A.M., Oliveros, E., Thomas, A.H., Quenching of the fluorescence of aromatic pterins by deoxynucleotides (2009) J. Phys. Chem. A, 113 (9), pp. 1794-1799 
504 |a Petroselli, G., Dantola, M.L., Cabrerizo, F.M., Capparelli, A.L., Lorente, C., Oliveros, E., Thomas, A.H., Oxidation of 2'-deoxyguanosine 5'-monophosphate photoinduced by pterin: Type i versus type II mechanism (2008) J. Am. Chem. Soc., 130 (10), pp. 3001-3011 
504 |a Dantola, M.L., Thomas, A.H., Braun, A.M., Oliveros, E., Lorente, C., Singlet oxygen (O2(1g)) quenching by dihydropterins (2007) J. Phys. Chem. A, 111 (20), pp. 4280-4288 
504 |a Folkers, K., Laesecke, K.P., (1985) Lipoidal Biopterin Compounds, , Google Patents 
504 |a Glazer, E.C., Nguyen, Y.H.L., Gray, H.B., Goodin, D.B., Probing inducible nitric oxide synthase with a pterin-ruthenium(II) sensitizer wire (2008) Angew. Chem., Int. Ed., 47 (5), pp. 898-901 
504 |a Tan, A., Van Den Broek, L., Bolscher, J., Vermass, D.J., Pastoors, L., Van Boeckel, C., Ploegh, H., Introduction of oxygen into the alkyl chain of N-decyl-dnm decreases lipophilicity and results in increased retention of glucose residues on N-linked oligosaccharides (1994) Glycobiology, 4 (2), pp. 141-149 
504 |a Tan, A., Van Den Broek, L., Van Boeckel, S., Ploegh, H., Bolscher, J., Chemical modification of the glucosidase inhibitor 1-deoxynojirimycin (1991) Structure-activity Relationships. J. Biol. Chem., 266 (22), pp. 14504-14510 
504 |a Blakley, R.L., (1969) The Biochemistry of Folic Acid and Related Pteridines, , North Holland Publishing Company 
504 |a Lorente, C., Thomas, A.H., Photophysics and photochemistry of pterins in aqueous solution (2006) Acc. Chem. Res., 39 (6), pp. 395-402 
504 |a Cabrerizo, F.M., Petroselli, G., Lorente, C., Capparelli, A.L., Thomas, A.H., Braun, A.M., Oliveros, E., Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions (2005) Photochem. Photobiol., 81 (5), pp. 1234-1240 
504 |a Crean, C.W., Camier, R., Lawler, M., Stevenson, C., Davies, R.J.H., Boyle, P.H., Kelly, J.M., Synthesis of N3-and 2-NH2-substituted 6,7-diphenylpterins and their use as intermediates for the preparation of oligonucleotide conjugates designed to target photooxidative damage on single-stranded DNA representing the bcr-abl chimeric gene (2004) Org. Biomol. Chem., 2 (24), pp. 3588-3601 
504 |a Hawkins, M.E., Pfleiderer, W., Jungmann, O., Balis, F.M., Synthesis and fluorescence characterization of pteridine adenosine nucleoside analogs for DNA incorporation (2001) Anal. Biochem., 298 (2), pp. 231-240 
504 |a Baptista, M.S., Cadet, J., Di Mascio, P., Ghogare, A.A., Greer, A., Hamblin, M.R., Lorente, C., Yoshimura, T.M., Type i and II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways (2017) Photochem. Photobiol 
504 |a Greer, A., Balaban, A.T., Liebman, J.F., An introduction to the consequences of spin and bond strength in the chemistry of diatomic oxygen, peroxides and related species (2014) The Chemistry of Peroxides; Greer, 3, pp. 1-20. , A., Liebman, J. F., Eds.; John Wiley &Sons: Chichester, U.K 
504 |a Greer, A., Organic chemistry: Molecular cross-talk (2007) Nature, 447 (7142), pp. 273-274 
504 |a Serrano, M.P., Lorente, C., Borsarelli, C.D., Thomas, A.H., Unraveling the degradation mechanism of purine nucleotides photosensitized by pterins: The role of charge-transfer steps (2015) ChemPhysChem, 16 (10), pp. 2244-2252 
504 |a Ito, K., Kawanishi, S., Photoinduced hydroxylation of deoxyguanosine in DNA by pterins: Sequence specificity and mechanism (1997) Biochemistry, 36 (7), pp. 1774-1781 
504 |a Castano, C., Oliveros, E., Thomas, A.H., Lorente, C., Histidine oxidation photosensitized by pterin: PH dependent mechanism (2015) J. Photochem. Photobiol., B, 153, pp. 483-489 
504 |a Castano, C., Lorente, C., Martins-Froment, N., Oliveros, E., Thomas, A.H., Degradation of a-melanocyte-stimulating hormone photosensitized by pterin (2014) Org. Biomol. Chem., 12 (23), pp. 3877-3886 
504 |a Laura Dantola, M., Zurbano, B.N., Thomas, A.H., Photoinactivation of tyrosinase sensitized by folic acid photoproducts (2015) J. Photochem. Photobiol., B, 149, pp. 172-179 
504 |a Reid, L.O., Roman, E.A., Thomas, A.H., Dantola, M.L., Photooxidation of tryptophan and tyrosine residues in human serum albumin sensitized by pterin: A model for globular protein photodamage in skin (2016) Biochemistry, 55 (34), pp. 4777-4786 
504 |a Denofrio, M.P., Lorente, C., Breitenbach, T., Hatz, S., Cabrerizo, F.M., Thomas, A.H., Ogilby, P.R., Photodynamic effects of pterin on hela cells (2011) Photochem. Photobiol., 87, pp. 862-866 
504 |a Minan, A., Lorente, C., Ipina, A., Thomas, A.H., De Mele Fernandez, L.M., Schilardi, P.L., Photodynamic inactivation induced by carboxypterin: A novel non-toxic bactericidal strategy against planktonic cells and biofilms of Staphylococcus aureus (2015) Biofouling, 31 (5), pp. 459-468 
504 |a Mallavadhani, U.V., Sahoo, L., Kumar, K.P., Murty, U.S., Synthesis and antimicrobial screening of some novel chalcones and flavanones substituted with higher alkyl chains (2014) Med. Chem. Res., 23 (6), pp. 2900-2908 
504 |a Doadrio, J.C., Sousa, E.M.B., Izquierdo-Barba, I., Doadrio, A.L., Perez-Pariente, J., Vallet-Regi, M., Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern (2006) J. Mater. Chem., 16 (5), pp. 462-466 
504 |a Nagao, Y., Naito, T., Abe, Y., Misono, T., Synthesis and properties of long and branched alkyl chain substituted perylenetetracarboxylic monoanhydride monoimides (1996) Dyes Pigm., 32 (2), pp. 71-83 
504 |a Serrano, M.P., Vignoni, M., Dantola, M.L., Oliveros, E., Lorente, C., Thomas, A.H., Emission properties of dihydropterins in aqueous solutions (2011) Phys. Chem. Chem. Phys., 13 (16), pp. 7419-7425 
504 |a Buglak, A.A., Telegina, T.A., Lyudnikova, T.A., Vechtomova, Y.L., Kritsky, M.S., Photooxidation of tetrahydrobiopterin under UV irradiation: Possible pathways and mechanisms (2014) Photochem. Photobiol., 90 (5), pp. 1017-1026 
504 |a Wilkinson, F., Helman, H.P., Ross, A.B., Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution an expanded and revised compilation (1995) J. Phys. Chem. Ref. Data, 24 (2), pp. 663-667 
504 |a Kuhn, H.J., Braslavsky, S.E., Schmidt, R., Chemical actinometry (IUPAC technical report) (2004) Pure Appl. Chem., 76 (12), pp. 2105-2146 
504 |a Angeli, N.G., Lagorio, M.G., Roman, E.A.S., Dicelio, L.E., Meso-substituted cationic porphyrins of biological interest photophysical and physicochemical properties in solution and bound to liposomes (2000) Photochem. Photobiol., 72 (1), pp. 49-56 
504 |a Freccero, M., Gandolfi, R., Sarzi-Amade, M., Selectivity of purine alkylation by a quinone methide kinetic or thermodynamic control? (2003) J. Org. Chem., 68 (16), pp. 6411-6423 
504 |a Veldhuyzen, W.F., Shallop, A.J., Jones, R.A., Rokita, S.E., Thermodynamic versus kinetic products of DNA alkylation as modeled by reaction of deoxyadenosine (2001) J. Am. Chem. Soc., 123 (45), pp. 11126-11132 
504 |a Babinski, D.J., Bao, X., El Arba, M., Chen, B., Hrovat, D.A., Borden, W.T., Frantz, D.E., Synchronized aromaticity as an enthalpic driving force for the aromatic cope rearrangement (2012) J. Am. Chem. Soc., 134 (39), pp. 16139-16142 
504 |a Schleyer, V.P.R., Introduction: Aromaticity (2001) Chem. Rev., 101 (5), pp. 1115-1118 
504 |a Langmaier, J., Pizl, M., Samec, Z., Zalis, S., Extreme basicity of biguanide drugs in aqueous solutions: Ion transfer voltammetry and DFT calculations (2016) J. Phys. Chem. A, 120 (37), pp. 7344-7350 
504 |a Sui, X., Xu, Y., Wang, X., Han, W., Pan, H., Xiao, M., Metformin: A novel but controversial drug in cancer prevention and treatment (2015) Mol. Pharmaceutics, 12 (11), pp. 3783-3791 
504 |a Matsuzaki, S., Humphries, K.M., Selective inhibition of deactivated mitochondrial complex i by biguanides (2015) Biochemistry, 54 (11), pp. 2011-2021 
504 |a Lorenzati, B., Zucco, C., Miglietta, S., Lamberti, F., Bruno, G., Oral hypoglycemic drugs: Pathophysiological basis of their mechanism of action (2010) Pharmaceuticals, 3 (9), pp. 3005-3020 
504 |a Kompis, I.M., Islam, K., Then, R.L., DNA and RNA synthesis: Antifolates (2005) Chem. Rev., 105 (2), pp. 593-620 
504 |a http://www.schircks.ch/pteridines/data/11903_Pterin.pdf; Thomas, A.H., Lorente, C., Capparelli, A.L., Pokhrel, M.R., Braun, A.M., Oliveros, E., Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: PH effects (2002) Photochem. Photobiol. Sci., 1 (6), pp. 421-426 
504 |a Berka, V., Yeh, H.C., Gao, D., Kiran, F., Tsai, A.L., Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase (2004) Biochemistry, 43 (41), pp. 13137-13148 
504 |a Davis, M.D., Kaufman, S., Milstien, S., The auto-oxidation of tetrahydrobiopterin (1988) Eur. J. Biochem., 173 (2), pp. 345-351 
504 |a Bartholomew, R.F., Davidson, R.S., The photosensitised oxidation of amines Part II. The use of dyes as photosensitisers: Evidence that singlet oxygen is not involved (1971) J. Chem. Soc. C, pp. 2347-2351 
504 |a Kayser, R.H., Young, R.H., The photoreduction of methylene blue by aminesII An investigation of the decay of semireduced methylene blue (1976) Photochem. Photobiol., 24 (5), pp. 403-411 
504 |a Endo, K., Hirayama, K., Aota, Y., Seya, K., Asakura, H., Hisamichi, K., Photooxidative decarboxylation of proline, a novel oxidative stress to natural amines (1998) Heterocycles, 47 (2), pp. 865-870 
504 |a Jiang, G., Chen, J., Huang, J.-S., Che, C.-M., Highly efficient oxidation of amines to imines by singlet oxygen and its application in ugi-type reactions (2009) Org. Lett., 11 (20), pp. 4568-4571 
504 |a Alberti, M.N., Vougioukalakis, G.C., Orfanopoulos, M., Photosensitized oxidations of substituted pyrroles: Unanticipated radical-derived oxygenated products (2009) J. Org. Chem., 74 (19), pp. 7274-7282 
504 |a Ghogare, A.A., Greer, A., Using singlet oxygen to synthesize natural products and drugs (2016) Chem. Rev., 116 (17), pp. 9994-10034 
504 |a Greer, A., Christopher Foote's discovery of the role of singlet oxygen in photosensitized oxidation reactions (2006) Acc. Chem. Res., 39 (11), pp. 797-804 
504 |a Calori, I.R., Pellosi, D.S., Vanzin, D., Cesar, G.B., Pereira, P.C.S., Politi, M.J., Hioka, N., Caetano, W., Distribution of xanthene dyes in DPPC vesicles: Rationally accounting for drug partitioning using a membrane model (2016) J. Braz. Chem. Soc., 27 (11), pp. 1938-1948 
504 |a Jin, C.S., Wada, H., Anayama, T., McVeigh, P.Z., Hu, H.P., Hirohashi, K., Nakajima, T., Yasufuku, K., An integrated nanotechnology-enabled transbronchial image-guided intervention strategy for peripheral lung cancer (2016) Cancer Res., 76 (19), pp. 5870-5880 
504 |a Valic, M.S., Zheng, G., Rethinking translational nanomedicine: Insights from the 'bottom-up' design of the Porphysome for guiding the clinical development of imageable nanomaterials (2016) Curr. Opin. Chem. Biol., 33, pp. 126-134 
504 |a Ng, K.K., Takada, M., Jin, C.C.S., Zheng, G., Self-sensing porphysomes for fluorescence-guided photothermal therapy (2015) Bioconjugate Chem., 26 (2), pp. 345-351 
504 |a MacDonald, T.D., Zheng, G., Porphysome nanoparticles: Tailoring treatments with nature's pigments (2014) Photonics Lasers Med., 3 (3), pp. 183-191 
504 |a Lovell, J.F., Jin, C.S., Huynh, E., Jin, H., Kim, C., Rubinstein, J.L., Chan, W.C.W., Zheng, G., Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents (2011) Nat. Mater., 10 (4), pp. 324-332 
520 3 |a A new series of decyl chain [-(CH2)9CH3] pterin conjugates have been investigated by photochemical and photophysical methods, and with theoretical solubility calculations. To synthesize the pterins, a nucleophilic substitution (SN2) reaction was used for the regioselective coupling of the alkyl chain to the O site over the N3 site. However, the O-alkylated pterin converts to N3-alkylated pterin under basic conditions, pointing to a kinetic product in the former and a thermodynamic product in the latter. Two additional adducts were also obtained from an N-amine condensation of DMF solvent molecule as byproducts. In comparison to the natural product pterin, the alkyl chain pterins possess reduced fluorescence quantum yields (F) and increased singlet oxygen quantum yields (-). It is shown that the DMF-condensed pterins were more photostable compared to the N3- and O-alkylated pterins bearing a free amine group. The alkyl chain pterins efficiently intercalate in large unilamellar vesicles, which is a good indicator of their potential use as photosensitizers in biomembranes. Our study serves as a starting point where the synthesis can be expanded to produce a wider series of lipophilic, photooxidatively active pterins. © Copyright 2017 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: Universidad Nacional de La Plata, UNLP 
536 |a Detalles de la financiación: Universidad Nacional de La Plata, UNLP 
536 |a Detalles de la financiación: City University of New York 
536 |a Detalles de la financiación: National Science Foundation, CHE-1464975 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: PIP 112-200901-00425 
536 |a Detalles de la financiación: Universidad Nacional de La Plata, UNLP, UNLP-Grant X712 
536 |a Detalles de la financiación: PICT-2012−0508 
536 |a Detalles de la financiación: †Instituto de Investigaciones Fisicoquímicas Teoricaś y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina ‡Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States §Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States ∥CIHIDECAR-CONICET, Departamento de Química Orgańica, FCEyN, Universidad de Buenos Aires, Pabelloń 2, 3er Piso, Ciudad Universitaria, Buenos Aires, Argentina 
536 |a Detalles de la financiación: The authors thank the Consejo Nacional de Investigaciones Cientifí cas y Tećnicas (CONICET) and the National Science Foundation (NSF) for supporting their collaboration through a Bilateral Cooperation ProgrammeLevel I (PCB-I, Res. 2172). N.W. and A.G. acknowledge support from the NSF (CHE-1464975). A.G. acknowledges support from the Tow Professorship at Brooklyn College. M.V. and A.H.T. acknowledge support from CONICET (Grant PIP 112-200901-00425), Agencia de Promocioń Cientifí ca y Tecnologicá (ANPCyT-Grant PICT-2012−0508), and Universidad Nacional de La Plata (UNLP-Grant X712). The authors gratefully acknowledge Dr. Mariá Noel Urrutia for her contribution. M.V., S.M.B., and A.H.T. are research members of CONICET. 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), CCT la Plata-CONICET, Casilla de Correo 16, Sucursal 4, La Plata, 1900, Argentina 
593 |a Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY 11210, United States 
593 |a Ph.D. Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, United States 
593 |a CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Pabellón 2, 3er Piso, Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a FLUORESCENCE 
690 1 0 |a LIPOPHILIC PTERINS 
690 1 0 |a LUVS 
690 1 0 |a SINGLET OXYGEN 
690 1 0 |a SYNTHESIS 
690 1 0 |a 2 AMINO 3 DECYLPTERIDIN 4(3H) ONE 
690 1 0 |a 4 (DECYLOXY)PTERIDIN 2 AMINE 
690 1 0 |a ALKYL GROUP 
690 1 0 |a N' (3 DECYL 4 OXO 3,4 DIHYDROPTERIDIN 2 YL) N,N DIMETHYLFORMIMIDAMIDE 
690 1 0 |a N' [4 (DECYLOXY)PTERIDIN 2 YL] N,N DIMETHYLFORMIMIDAMIDE 
690 1 0 |a PHOTOSENSITIZING AGENT 
690 1 0 |a PTERIN 
690 1 0 |a PTERIN DERIVATIVE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ALKYLATION 
690 1 0 |a ARTICLE 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a CONJUGATE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DRUG SOLUBILITY 
690 1 0 |a DRUG STRUCTURE 
690 1 0 |a DRUG SYNTHESIS 
690 1 0 |a FLUORESCENCE 
690 1 0 |a LIPOPHILICITY 
690 1 0 |a NUCLEOPHILICITY 
690 1 0 |a PHOSPHOLIPID MEMBRANE 
690 1 0 |a PHOTODEGRADATION 
690 1 0 |a PHOTOSENSITIZATION 
690 1 0 |a PHOTOTHERMAL THERAPY 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a QUANTUM YIELD 
690 1 0 |a REGIOSELECTIVITY 
690 1 0 |a SUBSTITUTION REACTION 
700 1 |a Walalawela, N. 
700 1 |a Bonesi, S.M. 
700 1 |a Greer, A. 
700 1 |a Thomas, A.H. 
773 0 |d American Chemical Society, 2018  |g v. 15  |h pp. 798-807  |k n. 3  |p Mol. Pharm.  |x 15438384  |t Molecular Pharmaceutics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043253365&doi=10.1021%2facs.molpharmaceut.7b00136&partnerID=40&md5=41d1c88880e1ad22fec03a1fff5c9845  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.molpharmaceut.7b00136  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15438384_v15_n3_p798_Vignoni  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15438384_v15_n3_p798_Vignoni  |y Registro en la Biblioteca Digital 
961 |a paper_15438384_v15_n3_p798_Vignoni  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 78027