Structural and mechanistic comparison of the Cyclopropane Mycolic Acid Synthases (CMAS) protein family of Mycobacterium tuberculosis

Tuberculosis (TB) is a chronic disease caused by the bacillus Mycobacterium tuberculosis(Mtb) and remains a leading cause of mortality worldwide. The bacteria has an external wall which protects it from being killed, and the enzymes involved in the biosynthesis of the cell wall components have been...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Defelipe, L.A
Otros Autores: Osman, F., Marti, M.A, Turjanski, A.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12985caa a22013577a 4500
001 PAPER-17050
003 AR-BaUEN
005 20230518204810.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85028689177 
024 7 |2 cas  |a bicarbonate, 144-55-8, 71-52-3; cyclopropane, 75-19-4; methyltransferase, 9033-25-4; mixed function oxidase, 9040-60-2; Bacterial Proteins; Bicarbonates; cyclopropane; Cyclopropanes; Methyltransferases; Mixed Function Oxygenases; mma4 protein, Mycobacterium tuberculossis 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BBRCA 
100 1 |a Defelipe, L.A. 
245 1 0 |a Structural and mechanistic comparison of the Cyclopropane Mycolic Acid Synthases (CMAS) protein family of Mycobacterium tuberculosis 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Turjanski, A.G.; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Argentina; email: adrian@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Organization, W.H., Others, Global tuberculosis report 2016 (2016), http://apps.who.int/iris/bitstream/10665/250441/1/9789241565394-eng.pdf; Caminero, J.A., Sotgiu, G., Zumla, A., Migliori, G.B., Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis (2010) Lancet Infect. Dis., 10, pp. 621-629 
504 |a Voskuil, M.I., Bartek, I.L., Visconti, K., Schoolnik, G.K., The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species (2011) Front. Microbiol., 2 
504 |a Demissie, A., Leyten, E.M.S., Abebe, M., Wassie, L., Aseffa, A., Abate, G., Fletcher, H., Doherty, T.M., VACSEL Study Group, Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis (2006) Clin. Vaccine Immunol., 13, pp. 179-186 
504 |a Abdallah, A.M., van Pittius, N.C.G., Champion, P.A.D., Cox, J., Luirink, J., Vandenbroucke-Grauls, C.M., Appelmelk, B.J., Bitter, W., Type VII secretion—mycobacteria show the way (2007) Nat. Rev. Microbiol., 5, pp. 883-891 
504 |a Marrakchi, H., Lanéelle, M.-A., Daffé, M., Mycolic acids: structures, biosynthesis, and beyond (2014) Chem. Biol., 21, pp. 67-85 
504 |a Defelipe, L.A., Do Porto, D.F., Pereira Ramos, P.I., Nicolás, M.F., Sosa, E., Radusky, L., Lanzarotti, E., Marti, M.A., A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis (2016) Tuberculosis, 97, pp. 181-192 
504 |a Yuan, Y., Lee, R.E., Besra, G.S., Belisle, J.T., Barry, C.E., Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis (1995) Proc. Natl. Acad. Sci., 92, pp. 6630-6634 
504 |a Glickman, M.S., Cahill, S.M., Jacobs, W.R., The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase (2001) J. Biol. Chem., 276, pp. 2228-2233 
504 |a Glickman, M.S., The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the α-mycolic acid (2003) J. Biol. Chem., 278, pp. 7844-7849 
504 |a Barkan, D., Rao, V., Sukenick, G.D., Glickman, M.S., Redundant function of cmaA2 and mmaA2 in Mycobacterium tuberculosis cis cyclopropanation of oxygenated mycolates (2010) J. Bacteriol., 192, pp. 3661-3668 
504 |a Glickman, M.S., Cox, J.S., Jacobs, W.R., Jr., A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis (2000) Mol. Cell., 5, pp. 717-727 
504 |a Yuan, Y., Crane, D.C., Musser, J.M., Sreevatsan, S., Barry, C.E., MMAS-1, the branch point between cis-and trans-cyclopropane-containing oxygenated mycolates in Mycobacterium tuberculosis (1997) J. Biol. Chem., 272, pp. 10041-10049 
504 |a Yuan, Y., Barry, C.E., A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis (1996) Proc. Natl. Acad. Sci., 93, pp. 12828-12833 
504 |a Behr, M.A., Schroeder, B.G., Brinkman, J.N., Slayden, R.A., Barry, C.E., A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927 (2000) J. Bacteriol., 182, pp. 3394-3399 
504 |a Eswar, N., Eramian, D., Webb, B., Shen, M.-Y., Sali, A., Protein structure modeling with MODELLER (2008) Structural Proteomics, pp. 145-159. , Springer 
504 |a Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., Garmendia-Doval, A.B., Juhos, S., Schmidtke, P., Barril, X., Morley, S.D., rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids (2014) PLoS Comput. Biol., 10, p. e1003571 
504 |a David Morley, S., Afshar, M., Validation of an empirical RNA-ligand scoring function for fast flexible docking using RiboDock ® (2004) J. Comput. Aided Mol. Des., 18, pp. 189-208 
504 |a Case, D.A., Babin, V., Berryman, J., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham, T.E., (2014), Iii, T.A. Darden, R.E. Duke, H. Gohlke, Others, amber 14; Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general amber force field (2004) J. Comput. Chem., 25, pp. 1157-1174 
504 |a Salomon-Ferrer, R., Götz, A.W., Poole, D., Le Grand, S., Walker, R.C., Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh Ewald (2013) J. Chem. Theory Comput., 9, pp. 3878-3888 
504 |a Elstner, M., The SCC-DFTB method and its application to biological systems (2006) Theor. Chem. Acc., 116, pp. 316-325 
504 |a de M Seabra, G., Walker, R.C., Elstner, M., Case, D.A., Roitberg, A.E., Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the amber molecular dynamics package (2007) J. Phys. Chem. A, 111, pp. 5655-5664 
504 |a Loncharich, R.J., Brooks, B.R., Pastor, R.W., Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide (1992) Biopolymers, 32, pp. 523-535 
504 |a Jarzynski, C., Nonequilibrium equality for free energy differences (1997) Phys. Rev. Lett., 78, p. 2690 
504 |a Defelipe, L.A., Lanzarotti, E., Gauto, D., Marti, M.A., Turjanski, A.G., Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families (2015) PLoS Comput. Biol., 11. , e1004051–e1004051 
504 |a Ramirez, C.L., Zeida, A., Jara, G.E., Roitberg, A.E., Marti, M.A., Improving efficiency in SMD simulations through a hybrid differential relaxation algorithm (2014) J. Chem. Theory Comput., 10, pp. 4609-4617 
504 |a Lanzarotti, E., Biekofsky, R.R., Estrin, D.A., Marti, M.A., Turjanski, A.G., Aromatic–aromatic interactions in proteins: beyond the dimer (2011) J. Chem. Inf. Model, 51, pp. 1623-1633 
504 |a Huang, C.-C., Smith, C.V., Glickman, M.S., Jacobs, W.R., Sacchettini, J.C., Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis (2002) J. Biol. Chem., 277, pp. 11559-11569 
504 |a Liao, R.-Z., Georgieva, P., Yu, J.-G., Himo, F., Mechanism of mycolic acid cyclopropane synthase: a theoretical study (2011) Biochemistry, 50, pp. 1505-1513 
504 |a Iwig, D.F., Uchida, A., Stromberg, J.A., Booker, S.J., The activity of Escherichia coli cyclopropane fatty acid synthase depends on the presence of bicarbonate (2005) J. Am. Chem. Soc., 127, pp. 11612-11613 
504 |a Iwig, D.F., Grippe, A.T., McIntyre, T.A., Booker, S.J., Isotope and elemental effects indicate a rate-limiting methyl transfer as the initial step in the reaction catalyzed by Escherichia coli cyclopropane fatty acid synthase (2004) Biochemistry, 43, pp. 13510-13524 
504 |a Hare, S.R., Pemberton, R.P., Tantillo, D.J., Navigating past a fork in the road: carbocation-π interactions can manipulate dynamic behavior of reactions facing post-transition-state bifurcations (2017) J. Am. Chem. Soc. 
504 |a López, E.D., Arcon, J.P., Gauto, D.F., Petruk, A.A., Modenutti, C.P., Dumas, V.G., Marti, M.A., Turjanski, A.G., WATCLUST: a tool for improving the design of drugs based on protein-water interactions (2015) Bioinformatics, 31, pp. 3697-3699 
520 3 |a Tuberculosis (TB) is a chronic disease caused by the bacillus Mycobacterium tuberculosis(Mtb) and remains a leading cause of mortality worldwide. The bacteria has an external wall which protects it from being killed, and the enzymes involved in the biosynthesis of the cell wall components have been proposed as promising targets for future drug development efforts. Cyclopropane Mycolic Acid Synthases (CMAS) constitute a group of ten homologous enzymes which belong to the mycolic acid biosynthesis pathway. These enzymes have S-adenosyl-L-methionine (SAM) dependent methyltransferase activity with a peculiarity, each one of them has strong substrate selectivity and reaction specificity, being able to produce among other things cyclopropanes or methyl-alcohol groups from the lipid olefin group. How each CMAS processes its substrate and how the specificity and selectivity are encoded in the protein sequence and structure, is still unclear. In this work, by using a combination of modeling tools, including comparative modeling, docking, all-atom MD and QM/MM methodologies we studied in detail the reaction mechanism of cmaA2, mmaA4, and mmaA1 CMAS and described the molecular determinants that lead to different products. We have modeled the protein-substrate complex structure and determined the free energy pathway for the reaction. The combination of modeling tools at different levels of complexity allows having a complete picture of the CMAS structure-activity relationship. © 2017 Elsevier Inc.  |l eng 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, 2620, Argentina 
593 |a IQUIBICEN-UBA/CONICET, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, 2620, Argentina 
690 1 0 |a BIOINFORMATICS 
690 1 0 |a CMAS 
690 1 0 |a METHYLTRANSFERASE 
690 1 0 |a MYCOLIC ACIDS 
690 1 0 |a QM/MM 
690 1 0 |a BACTERIAL ENZYME 
690 1 0 |a CYCLOPROPANE MYCOLIC ACID SYNTHASE 
690 1 0 |a PROTEIN CMAA2 
690 1 0 |a PROTEIN MMAA1 
690 1 0 |a PROTEIN MMAA4 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a BACTERIAL PROTEIN 
690 1 0 |a BICARBONATE 
690 1 0 |a CYCLOPROPANE 
690 1 0 |a CYCLOPROPANE DERIVATIVE 
690 1 0 |a METHYLTRANSFERASE 
690 1 0 |a MIXED FUNCTION OXIDASE 
690 1 0 |a MMA4 PROTEIN, MYCOBACTERIUM TUBERCULOSSIS 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a ARTICLE 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a ENERGY 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a ENZYME MECHANISM 
690 1 0 |a ENZYME STRUCTURE 
690 1 0 |a ENZYME SUBSTRATE COMPLEX 
690 1 0 |a MOLECULAR DOCKING 
690 1 0 |a MOLECULAR MODEL 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a STRUCTURE ACTIVITY RELATION 
690 1 0 |a CHEMISTRY 
690 1 0 |a ENZYME ACTIVE SITE 
690 1 0 |a ENZYMOLOGY 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a STRUCTURE ACTIVITY RELATION 
690 1 0 |a BACTERIAL PROTEINS 
690 1 0 |a BICARBONATES 
690 1 0 |a CATALYTIC DOMAIN 
690 1 0 |a CYCLOPROPANES 
690 1 0 |a METHYLTRANSFERASES 
690 1 0 |a MIXED FUNCTION OXYGENASES 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a MOLECULAR DOCKING SIMULATION 
690 1 0 |a MOLECULAR DYNAMICS SIMULATION 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a STRUCTURE-ACTIVITY RELATIONSHIP 
650 1 7 |2 spines  |a TUBERCULOSIS 
700 1 |a Osman, F. 
700 1 |a Marti, M.A. 
700 1 |a Turjanski, A.G. 
773 0 |d Elsevier B.V., 2018  |g v. 498  |h pp. 288-295  |k n. 2  |p Biochem. Biophys. Res. Commun.  |x 0006291X  |w (AR-BaUEN)CENRE-905  |t Biochemical and Biophysical Research Communications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028689177&doi=10.1016%2fj.bbrc.2017.08.119&partnerID=40&md5=5b9e75720b0d1ff6521b06e8c504c50a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bbrc.2017.08.119  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0006291X_v498_n2_p288_Defelipe  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v498_n2_p288_Defelipe  |y Registro en la Biblioteca Digital 
961 |a paper_0006291X_v498_n2_p288_Defelipe  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 78003