Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps

Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a trans...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marsico, F.
Otros Autores: Burastero, O., Defelipe, L.A, Lopez, E.D, Arrar, M., Turjanski, A.G, Marti, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2018
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14471caa a22014177a 4500
001 PAPER-17049
003 AR-BaUEN
005 20230518204810.0
008 190410s2018 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85029654535 
024 7 |2 cas  |a histidine, 645-35-2, 7006-35-1, 71-00-1; protein histidine kinase, 99283-67-7; adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; protein kinase, 9026-43-1; Adenosine Triphosphate; CpxA protein, E coli; Escherichia coli Proteins; Histidine; Protein Kinases 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BBRCA 
100 1 |a Marsico, F. 
245 1 0 |a Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps 
260 |b Elsevier B.V.  |c 2018 
270 1 0 |m Turjanski, A.G.; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Argentina; email: adrian@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Albanesi, D., Mansilla, M.C., De Mendoza, D., The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator (2004) J. Bacteriol., 186, pp. 2655-2663. , 186 
504 |a D. y, Silhavy, T.J., Danese, P.N., Snyder, W.B., The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP (1995) Genes Dev., 15, pp. 387-398. , 9 
504 |a Rinaldi, J., Arrar, M., Sycz, G., Structural insights into the HWE histidine kinase family: the Brucella blue light-activated histidine kinase domain (2016) J. Biol. Mol., 24, pp. 4247-4259 
504 |a Dutta, R., Qin, L., Inouye, M., Microreview histidine kinases: diversity of domain organization (1999), 34, pp. 633-640; Ferris, H.U., Dunin-Horkawicz, S., Hornig, N., Hulko, M., Martin, J., Schultz, J.E., Zeth, K., Coles, M., Mechanism of regulation of receptor histidine kinases (2012) Structure, 20, pp. 56-66 
504 |a C.M., L.A.N., Ferris, H.U., Hartmann, M.D., Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation (2014) J. Struct. Biol., 186, pp. 1-4 
504 |a Diensthuber, R.P., Bommer, M., Gleichmann, T., Möglich, A., Full- length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators (2013) Structure, 106, pp. 1127-1136 
504 |a Albanesi, D., Marti, M., Trajtenberg, F., Structural plasticity and catalysis regulation of a thermosensor histidine kinase (2014) PNAS, 106, pp. 6185-16190 
504 |a Wolanin, P.M., Thomason, P.A., Stock, J.B., (2002), pp. 1-8. , Protein family review Histidine protein kinases: key signal transducers outside the animal kingdom; Mechaly, A.E., Soto Diaz, S., Sassoon, N., Structural coupling between autokinase and phosphotransferase reactions in a bacterial histidine kinase (2017) Structure, 24, pp. 4247-4259 
504 |a Trajtenberg, F., Imelio, J.A., Machado, M.R., Larrieux, N., Marti, M.A., Obal, G., Mechaly, A.E., Buschiazzo, A., Regulation of signaling directionality revealed by 3D snapshots of a kinase: regulator complex in action (2016) Elife, 5, p. e21422 
504 |a Nakayama, S., Watanabe, H., Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene (1995) J. Bacteriol., 177, pp. 5062-5069. , 177 
504 |a C.J. y Hendrickson, W.A., Cheung, J., Hendrickson, W.A., Sensor domains of two-component regulatory systems (2010) Curr. Opin. Microbiol., 13.2, pp. 116-123. , 13 
504 |a Mechaly, A.E., Sassoon, N., Betton, J.M., Alzari, P.M., Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation (2014) PLoS Biol., 12 
504 |a M.-R.L.M.A. y Casino, P., Casino, P., Miguel-Romero, L., Marina, A., Casino, P., Miguel-Romero, L., Visualizing autophosphorylation in histidine kinases (2014) Nat. Commun., 5, p. 3258 
504 |a Šali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol., 234, pp. 779-815 
504 |a HU1, F., Dunin-Horkawicz, S., Hornig, N., Mechanism of regulation of receptor histidine kinases (2012) Structure, 20, pp. 56-66 
504 |a Salomon-Ferrer, R., Götz, A.W., Poole, D., Le Grand, S., Walker, R.C., Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald (2013) J. Chem. Theory Comput., 9, pp. 3878-3888 
504 |a Case, D.A., Betz, R.M., Botello-Smith, W., AMBER 2016 (2016), Univ. California San Fr; Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C., ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB (2015) J. Chem. Theory Comput., 11, pp. 3696-3713 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935 
504 |a Meagher, K.L., Redman, L.T., Carlson, H.A., Development of polyphosphate parameters for use with the AMBER force field (2003) J. Comput. Chem., 24, pp. 1016-1025 
504 |a Hills, R.D., Jr., Lu, L., Voth, G., Multiscale coarse-graining of the protein energy landscape (2010) PLoS Comput. Biol., pp. 1-12 
504 |a y Luciana Capece, L.E.L.M.A.M., Lombardi, L.E., Mart’∖i, M.A., Capece, L., CG2AA: backmapping protein coarse-grained structures (2015) Bioinforma, 32, pp. 1235-1237. , 32 
504 |a Amadei, A., Linssen, A., Berendsen, H.J.C., Essential dynamics of proteins (1993) Proteins Struct. Funct. Bioinforma., 17, pp. 412-425 
504 |a Miyazawa, S., Jernigan, R.L., Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues (1999) Proteins Struct. Funct. Bioinforma., 34, pp. 49-68 
504 |a Ramírez, C.L., Petruk, A., Bringas, M., Estrin, D.A., Roitberg, A.E., Marti, M.A., Capece, L., Coarse-grained simulations of heme proteins: validation and study of large conformational transitions (2016) J. Chem. Theory Comput., 12, pp. 3390-3397 
504 |a Mongan, J., Case, D.A., McCAMMON, J.A., Constant pH molecular dynamics in generalized born implicit solvent (2004) J. Comput. Chem., 25, pp. 2038-2048 
504 |a Defelipe, L.A., Lanzarotti, E., Gauto, D., Marti, M.A., Turjanski, A.G., Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families (2015) PLoS Comput. Biol., 11, p. e1004051 
504 |a Nitsche, M.A., Ferreria, M., Mocskos, E.E., Gonzalez Lebrero, M.C., GPU accelerated implementation of density functional theory for hybrid QM/MM simulations (2014) J. Chem. Theory Comput., 10, pp. 959-967 
504 |a Project, L.I.O., https://github.com/MALBECC/lio, (n.d.); Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865 
504 |a Ram’∖irez, C.L., Mart’∖i, M.A., Roitberg, A.E., Chapter six-steered molecular dynamics methods applied to enzyme mechanism and energetics (2016) Methods Enzymol., 578, pp. 123-143 
504 |a Martí, M.A., Estrin, D.A., Roitberg, A.E., Molecular basis for the pH dependent structural transition of Nitrophorin 4 (2009) J. Phys. Chem. B, 113, pp. 2135-2142 
504 |a Atkinson, M.R., Ninfa, A.J., Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator II (NRII or NtrB) (1993) J. Bacteriol., 175, pp. 7016-7023 
504 |a Willett, J.W., Kirby, J.R., Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities (2012) PLoS Genet., 8, p. e1003084 
504 |a Marina, A., Mott, C., Auyzenberg, A., Hendrickson, W.A., Waldburger, C.D., Structural and mutational analysis of the PhoQ histidine kinase catalytic domain insight into the reaction mechanism (2001) J. Biol. Chem., 276, pp. 41182-41190 
504 |a Möglich, A., Ayers, R.A., Moffat, K., Design and signaling mechanism of light-regulated histidine kinases (2009) J. Mol. Biol., 385, pp. 1433-1444 
504 |a Ferris, H.U., Dunin-Horkawicz, S., Mondéjar, L.G., The mechanisms of HAMP-mediated signaling in transmembrane receptors. (2011) Structure, 19, pp. 378-385 
504 |a C.L.-L., Appleman, J.A., Stewart, V., Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases (2003) J. Bacteriol., 185, pp. 4872-4882 
504 |a Parkinson, J.S., Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases (2010) Annu. Rev. Microbiol., 64, pp. 101-122 
504 |a Hulko, M., Berndt, F., Gruber, M., The HAMP domain structure implies helix rotation in transmembrane signaling (2006) Cell, 126, pp. 929-940 
504 |a Gutu, A.D., Wayne, K.J., Sham, L.T., Winkler, M.E., Kinetic characterization of the WalRKSpn (VicRK) two-component system of Streptococcus pneumoniae: dependence of WalKSpn (VicK) phosphatase activity on its PAS domain (2010) J. Bacteriol., 192, pp. 2346-2358 
504 |a Warshel, A., Bora, R.P., Perspective: defining and quantifying the role of dynamics in enzyme catalysis (2016) J. Chem. Phys., 144, p. 180901 
504 |a Klinman, J.P., Kohen, A., Hydrogen tunneling links protein dynamics to enzyme catalysis (2013) Annu. Rev. Biochem., 82, pp. 471-496 
504 |a Henzler-Wildman, K.A., Lei, M., Thai, V., Kerns, S.J., Karplus, M., Kern, D., A hierarchy of timescales in protein dynamics is linked to enzyme catalysis (2007) Nature, 450, pp. 913-916 
504 |a Capra, E.J., Laub, M.T., Evolution of two-component signal transduction systems (2012) Annu. Rev. Microbiol., 66, pp. 325-347 
504 |a Ashenberg, O., Keating, A.E., Laub, M.T., Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans (2013) J. Mol. Biol., 425, pp. 1198-1209 
520 3 |a Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a transmembrane domain, a signal-transducing HAMP domain, a dimerization and histidine phospho-acceptor sub-domain (DHp) and a catalytic and ATP-binding subdomain (CA). The key activation event involves the rearrangement of the HAMP-DHp helical core and translation of the CA towards the acceptor histidine, which presumably results in an autokinase-competent complex. In the present work we integrate coarse-grained, all-atom, and hybrid QM-MM computer simulations to probe the large-scale conformational reorganization that takes place from the inactive to the autokinase-competent state (conformational step), and evaluate its relation to the autokinase reaction itself (chemical step). Our results highlight a tight coupling between conformational and chemical steps, underscoring the advantage of CA walking along the DHp core, to favor a reactive tautomeric state of the phospho-acceptor histidine. The results not only represent an example of multiscale modelling, but also show how protein dynamics can promote catalysis. © 2017 Elsevier Inc.  |l eng 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a IQUIBICEN-UBA/CONICET, Intendente Güiraldes 2620, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a COARSE GRAIN 
690 1 0 |a CPXA 
690 1 0 |a HISTIDINE KINASE 
690 1 0 |a QM/MM 
690 1 0 |a TWO COMPONENT SYSTEM 
690 1 0 |a HISTIDINE 
690 1 0 |a PROTEIN CPXA 
690 1 0 |a PROTEIN HISTIDINE KINASE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ADENOSINE TRIPHOSPHATE 
690 1 0 |a CPXA PROTEIN, E COLI 
690 1 0 |a ESCHERICHIA COLI PROTEIN 
690 1 0 |a HISTIDINE 
690 1 0 |a PROTEIN KINASE 
690 1 0 |a ARTICLE 
690 1 0 |a AUTOPHOSPHORYLATION 
690 1 0 |a CATALYSIS 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a ENZYME ACTIVATION 
690 1 0 |a ENZYME CONFORMATION 
690 1 0 |a ENZYME MECHANISM 
690 1 0 |a ENZYME PHOSPHORYLATION 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a CHEMISTRY 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a ADENOSINE TRIPHOSPHATE 
690 1 0 |a ESCHERICHIA COLI PROTEINS 
690 1 0 |a HISTIDINE 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a MOLECULAR DYNAMICS SIMULATION 
690 1 0 |a PHOSPHORYLATION 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN DOMAINS 
690 1 0 |a PROTEIN KINASES 
650 1 7 |2 spines  |a PH 
700 1 |a Burastero, O. 
700 1 |a Defelipe, L.A. 
700 1 |a Lopez, E.D. 
700 1 |a Arrar, M. 
700 1 |a Turjanski, A.G. 
700 1 |a Marti, M.A. 
773 0 |d Elsevier B.V., 2018  |g v. 498  |h pp. 305-312  |k n. 2  |p Biochem. Biophys. Res. Commun.  |x 0006291X  |w (AR-BaUEN)CENRE-905  |t Biochemical and Biophysical Research Communications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029654535&doi=10.1016%2fj.bbrc.2017.09.039&partnerID=40&md5=7fd2c97fa35fafc328e2b700661733ec  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bbrc.2017.09.039  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0006291X_v498_n2_p305_Marsico  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v498_n2_p305_Marsico  |y Registro en la Biblioteca Digital 
961 |a paper_0006291X_v498_n2_p305_Marsico  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 78002