Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps
Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a trans...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier B.V.
2018
|
| Materias: | |
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 14471caa a22014177a 4500 | ||
|---|---|---|---|
| 001 | PAPER-17049 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204810.0 | ||
| 008 | 190410s2018 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85029654535 | |
| 024 | 7 | |2 cas |a histidine, 645-35-2, 7006-35-1, 71-00-1; protein histidine kinase, 99283-67-7; adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; protein kinase, 9026-43-1; Adenosine Triphosphate; CpxA protein, E coli; Escherichia coli Proteins; Histidine; Protein Kinases | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a BBRCA | ||
| 100 | 1 | |a Marsico, F. | |
| 245 | 1 | 0 | |a Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps |
| 260 | |b Elsevier B.V. |c 2018 | ||
| 270 | 1 | 0 | |m Turjanski, A.G.; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Argentina; email: adrian@qi.fcen.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Albanesi, D., Mansilla, M.C., De Mendoza, D., The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator (2004) J. Bacteriol., 186, pp. 2655-2663. , 186 | ||
| 504 | |a D. y, Silhavy, T.J., Danese, P.N., Snyder, W.B., The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP (1995) Genes Dev., 15, pp. 387-398. , 9 | ||
| 504 | |a Rinaldi, J., Arrar, M., Sycz, G., Structural insights into the HWE histidine kinase family: the Brucella blue light-activated histidine kinase domain (2016) J. Biol. Mol., 24, pp. 4247-4259 | ||
| 504 | |a Dutta, R., Qin, L., Inouye, M., Microreview histidine kinases: diversity of domain organization (1999), 34, pp. 633-640; Ferris, H.U., Dunin-Horkawicz, S., Hornig, N., Hulko, M., Martin, J., Schultz, J.E., Zeth, K., Coles, M., Mechanism of regulation of receptor histidine kinases (2012) Structure, 20, pp. 56-66 | ||
| 504 | |a C.M., L.A.N., Ferris, H.U., Hartmann, M.D., Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation (2014) J. Struct. Biol., 186, pp. 1-4 | ||
| 504 | |a Diensthuber, R.P., Bommer, M., Gleichmann, T., Möglich, A., Full- length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators (2013) Structure, 106, pp. 1127-1136 | ||
| 504 | |a Albanesi, D., Marti, M., Trajtenberg, F., Structural plasticity and catalysis regulation of a thermosensor histidine kinase (2014) PNAS, 106, pp. 6185-16190 | ||
| 504 | |a Wolanin, P.M., Thomason, P.A., Stock, J.B., (2002), pp. 1-8. , Protein family review Histidine protein kinases: key signal transducers outside the animal kingdom; Mechaly, A.E., Soto Diaz, S., Sassoon, N., Structural coupling between autokinase and phosphotransferase reactions in a bacterial histidine kinase (2017) Structure, 24, pp. 4247-4259 | ||
| 504 | |a Trajtenberg, F., Imelio, J.A., Machado, M.R., Larrieux, N., Marti, M.A., Obal, G., Mechaly, A.E., Buschiazzo, A., Regulation of signaling directionality revealed by 3D snapshots of a kinase: regulator complex in action (2016) Elife, 5, p. e21422 | ||
| 504 | |a Nakayama, S., Watanabe, H., Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene (1995) J. Bacteriol., 177, pp. 5062-5069. , 177 | ||
| 504 | |a C.J. y Hendrickson, W.A., Cheung, J., Hendrickson, W.A., Sensor domains of two-component regulatory systems (2010) Curr. Opin. Microbiol., 13.2, pp. 116-123. , 13 | ||
| 504 | |a Mechaly, A.E., Sassoon, N., Betton, J.M., Alzari, P.M., Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation (2014) PLoS Biol., 12 | ||
| 504 | |a M.-R.L.M.A. y Casino, P., Casino, P., Miguel-Romero, L., Marina, A., Casino, P., Miguel-Romero, L., Visualizing autophosphorylation in histidine kinases (2014) Nat. Commun., 5, p. 3258 | ||
| 504 | |a Šali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol., 234, pp. 779-815 | ||
| 504 | |a HU1, F., Dunin-Horkawicz, S., Hornig, N., Mechanism of regulation of receptor histidine kinases (2012) Structure, 20, pp. 56-66 | ||
| 504 | |a Salomon-Ferrer, R., Götz, A.W., Poole, D., Le Grand, S., Walker, R.C., Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald (2013) J. Chem. Theory Comput., 9, pp. 3878-3888 | ||
| 504 | |a Case, D.A., Betz, R.M., Botello-Smith, W., AMBER 2016 (2016), Univ. California San Fr; Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., Simmerling, C., ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB (2015) J. Chem. Theory Comput., 11, pp. 3696-3713 | ||
| 504 | |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935 | ||
| 504 | |a Meagher, K.L., Redman, L.T., Carlson, H.A., Development of polyphosphate parameters for use with the AMBER force field (2003) J. Comput. Chem., 24, pp. 1016-1025 | ||
| 504 | |a Hills, R.D., Jr., Lu, L., Voth, G., Multiscale coarse-graining of the protein energy landscape (2010) PLoS Comput. Biol., pp. 1-12 | ||
| 504 | |a y Luciana Capece, L.E.L.M.A.M., Lombardi, L.E., Mart’∖i, M.A., Capece, L., CG2AA: backmapping protein coarse-grained structures (2015) Bioinforma, 32, pp. 1235-1237. , 32 | ||
| 504 | |a Amadei, A., Linssen, A., Berendsen, H.J.C., Essential dynamics of proteins (1993) Proteins Struct. Funct. Bioinforma., 17, pp. 412-425 | ||
| 504 | |a Miyazawa, S., Jernigan, R.L., Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues (1999) Proteins Struct. Funct. Bioinforma., 34, pp. 49-68 | ||
| 504 | |a Ramírez, C.L., Petruk, A., Bringas, M., Estrin, D.A., Roitberg, A.E., Marti, M.A., Capece, L., Coarse-grained simulations of heme proteins: validation and study of large conformational transitions (2016) J. Chem. Theory Comput., 12, pp. 3390-3397 | ||
| 504 | |a Mongan, J., Case, D.A., McCAMMON, J.A., Constant pH molecular dynamics in generalized born implicit solvent (2004) J. Comput. Chem., 25, pp. 2038-2048 | ||
| 504 | |a Defelipe, L.A., Lanzarotti, E., Gauto, D., Marti, M.A., Turjanski, A.G., Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families (2015) PLoS Comput. Biol., 11, p. e1004051 | ||
| 504 | |a Nitsche, M.A., Ferreria, M., Mocskos, E.E., Gonzalez Lebrero, M.C., GPU accelerated implementation of density functional theory for hybrid QM/MM simulations (2014) J. Chem. Theory Comput., 10, pp. 959-967 | ||
| 504 | |a Project, L.I.O., https://github.com/MALBECC/lio, (n.d.); Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865 | ||
| 504 | |a Ram’∖irez, C.L., Mart’∖i, M.A., Roitberg, A.E., Chapter six-steered molecular dynamics methods applied to enzyme mechanism and energetics (2016) Methods Enzymol., 578, pp. 123-143 | ||
| 504 | |a Martí, M.A., Estrin, D.A., Roitberg, A.E., Molecular basis for the pH dependent structural transition of Nitrophorin 4 (2009) J. Phys. Chem. B, 113, pp. 2135-2142 | ||
| 504 | |a Atkinson, M.R., Ninfa, A.J., Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator II (NRII or NtrB) (1993) J. Bacteriol., 175, pp. 7016-7023 | ||
| 504 | |a Willett, J.W., Kirby, J.R., Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities (2012) PLoS Genet., 8, p. e1003084 | ||
| 504 | |a Marina, A., Mott, C., Auyzenberg, A., Hendrickson, W.A., Waldburger, C.D., Structural and mutational analysis of the PhoQ histidine kinase catalytic domain insight into the reaction mechanism (2001) J. Biol. Chem., 276, pp. 41182-41190 | ||
| 504 | |a Möglich, A., Ayers, R.A., Moffat, K., Design and signaling mechanism of light-regulated histidine kinases (2009) J. Mol. Biol., 385, pp. 1433-1444 | ||
| 504 | |a Ferris, H.U., Dunin-Horkawicz, S., Mondéjar, L.G., The mechanisms of HAMP-mediated signaling in transmembrane receptors. (2011) Structure, 19, pp. 378-385 | ||
| 504 | |a C.L.-L., Appleman, J.A., Stewart, V., Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases (2003) J. Bacteriol., 185, pp. 4872-4882 | ||
| 504 | |a Parkinson, J.S., Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases (2010) Annu. Rev. Microbiol., 64, pp. 101-122 | ||
| 504 | |a Hulko, M., Berndt, F., Gruber, M., The HAMP domain structure implies helix rotation in transmembrane signaling (2006) Cell, 126, pp. 929-940 | ||
| 504 | |a Gutu, A.D., Wayne, K.J., Sham, L.T., Winkler, M.E., Kinetic characterization of the WalRKSpn (VicRK) two-component system of Streptococcus pneumoniae: dependence of WalKSpn (VicK) phosphatase activity on its PAS domain (2010) J. Bacteriol., 192, pp. 2346-2358 | ||
| 504 | |a Warshel, A., Bora, R.P., Perspective: defining and quantifying the role of dynamics in enzyme catalysis (2016) J. Chem. Phys., 144, p. 180901 | ||
| 504 | |a Klinman, J.P., Kohen, A., Hydrogen tunneling links protein dynamics to enzyme catalysis (2013) Annu. Rev. Biochem., 82, pp. 471-496 | ||
| 504 | |a Henzler-Wildman, K.A., Lei, M., Thai, V., Kerns, S.J., Karplus, M., Kern, D., A hierarchy of timescales in protein dynamics is linked to enzyme catalysis (2007) Nature, 450, pp. 913-916 | ||
| 504 | |a Capra, E.J., Laub, M.T., Evolution of two-component signal transduction systems (2012) Annu. Rev. Microbiol., 66, pp. 325-347 | ||
| 504 | |a Ashenberg, O., Keating, A.E., Laub, M.T., Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans (2013) J. Mol. Biol., 425, pp. 1198-1209 | ||
| 520 | 3 | |a Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a transmembrane domain, a signal-transducing HAMP domain, a dimerization and histidine phospho-acceptor sub-domain (DHp) and a catalytic and ATP-binding subdomain (CA). The key activation event involves the rearrangement of the HAMP-DHp helical core and translation of the CA towards the acceptor histidine, which presumably results in an autokinase-competent complex. In the present work we integrate coarse-grained, all-atom, and hybrid QM-MM computer simulations to probe the large-scale conformational reorganization that takes place from the inactive to the autokinase-competent state (conformational step), and evaluate its relation to the autokinase reaction itself (chemical step). Our results highlight a tight coupling between conformational and chemical steps, underscoring the advantage of CA walking along the DHp core, to favor a reactive tautomeric state of the phospho-acceptor histidine. The results not only represent an example of multiscale modelling, but also show how protein dynamics can promote catalysis. © 2017 Elsevier Inc. |l eng | |
| 593 | |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Ciudad Autónoma de Buenos Aires, Argentina | ||
| 593 | |a IQUIBICEN-UBA/CONICET, Intendente Güiraldes 2620, Ciudad Autónoma de Buenos Aires, Argentina | ||
| 593 | |a Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a COARSE GRAIN |
| 690 | 1 | 0 | |a CPXA |
| 690 | 1 | 0 | |a HISTIDINE KINASE |
| 690 | 1 | 0 | |a QM/MM |
| 690 | 1 | 0 | |a TWO COMPONENT SYSTEM |
| 690 | 1 | 0 | |a HISTIDINE |
| 690 | 1 | 0 | |a PROTEIN CPXA |
| 690 | 1 | 0 | |a PROTEIN HISTIDINE KINASE |
| 690 | 1 | 0 | |a UNCLASSIFIED DRUG |
| 690 | 1 | 0 | |a ADENOSINE TRIPHOSPHATE |
| 690 | 1 | 0 | |a CPXA PROTEIN, E COLI |
| 690 | 1 | 0 | |a ESCHERICHIA COLI PROTEIN |
| 690 | 1 | 0 | |a HISTIDINE |
| 690 | 1 | 0 | |a PROTEIN KINASE |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a AUTOPHOSPHORYLATION |
| 690 | 1 | 0 | |a CATALYSIS |
| 690 | 1 | 0 | |a COMPUTER SIMULATION |
| 690 | 1 | 0 | |a ENZYME ACTIVATION |
| 690 | 1 | 0 | |a ENZYME CONFORMATION |
| 690 | 1 | 0 | |a ENZYME MECHANISM |
| 690 | 1 | 0 | |a ENZYME PHOSPHORYLATION |
| 690 | 1 | 0 | |a MOLECULAR DYNAMICS |
| 690 | 1 | 0 | |a PRIORITY JOURNAL |
| 690 | 1 | 0 | |a CHEMISTRY |
| 690 | 1 | 0 | |a METABOLISM |
| 690 | 1 | 0 | |a MOLECULAR DYNAMICS |
| 690 | 1 | 0 | |a PHOSPHORYLATION |
| 690 | 1 | 0 | |a PROTEIN CONFORMATION |
| 690 | 1 | 0 | |a PROTEIN DOMAIN |
| 690 | 1 | 0 | |a ADENOSINE TRIPHOSPHATE |
| 690 | 1 | 0 | |a ESCHERICHIA COLI PROTEINS |
| 690 | 1 | 0 | |a HISTIDINE |
| 690 | 1 | 0 | |a HYDROGEN-ION CONCENTRATION |
| 690 | 1 | 0 | |a MOLECULAR DYNAMICS SIMULATION |
| 690 | 1 | 0 | |a PHOSPHORYLATION |
| 690 | 1 | 0 | |a PROTEIN CONFORMATION |
| 690 | 1 | 0 | |a PROTEIN DOMAINS |
| 690 | 1 | 0 | |a PROTEIN KINASES |
| 650 | 1 | 7 | |2 spines |a PH |
| 700 | 1 | |a Burastero, O. | |
| 700 | 1 | |a Defelipe, L.A. | |
| 700 | 1 | |a Lopez, E.D. | |
| 700 | 1 | |a Arrar, M. | |
| 700 | 1 | |a Turjanski, A.G. | |
| 700 | 1 | |a Marti, M.A. | |
| 773 | 0 | |d Elsevier B.V., 2018 |g v. 498 |h pp. 305-312 |k n. 2 |p Biochem. Biophys. Res. Commun. |x 0006291X |w (AR-BaUEN)CENRE-905 |t Biochemical and Biophysical Research Communications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029654535&doi=10.1016%2fj.bbrc.2017.09.039&partnerID=40&md5=7fd2c97fa35fafc328e2b700661733ec |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.bbrc.2017.09.039 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0006291X_v498_n2_p305_Marsico |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v498_n2_p305_Marsico |y Registro en la Biblioteca Digital |
| 961 | |a paper_0006291X_v498_n2_p305_Marsico |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 78002 | ||